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15:15–15:45 Biryukov, Großschädl: CAESAR: Cryptanalysis of the full AES using
GPU-like hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

15:45–16:15 Bogdanov, Kavun, Paar, Rechberger, Yalcin: Better than
brute-force—optimized hardware architecture for efficient biclique
attacks on AES-128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

16:15–16:45 Sprengers, Batina: Speeding up GPU-based password cracking . . . . . . . . 35

16:45–17:15 Break

17:15–18:15 Budiansky (invited): Codebreaking with IBM machines in World War
II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

18:15–19:00 Book Signing

19:00–22:00 Dinner

Sunday 18 March

09:00–10:00 Hurd, Browning (invited): Cryptol: The Language of Cryptography
Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

10:00–10:30 Break

10:30–11:00 Yasuda, Shimoyama, Izu, Kogure: On the strength comparison of
ECC and RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

11:00–11:30 Judge, Schaumont: A flexible hardware ECDLP engine in Bluespec . . . . 81

11:30–12:00 Henry, Goldberg: Solving discrete logarithms in smooth-order groups
with CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

12:00–13:30 Lunch

13:30–14:30 Stevens (invited): Cryptanalysis of MD5 and SHA-1 . . . . . . . . . . . . . . 119

14:30–15:00 Cheng, Chou, Niederhagen, Yang: Solving quadratic equations with
XL on parallel architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

15:00–15:30 Dinur, Güneysu, Paar, Shamir, Zimmermann: Experimentally
verifying a complex algebraic attack on the Grain-128 cipher using
dedicated reconfigurable hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

15:30–16:00 Break

16:00–16:30 Bernstein, Chen, Cheng, Lange, Niederhagen, Schwabe, Yang: Usable
assembly language for GPUs: a success story . . . . . . . . . . . . . . . . . . . 169

16:30–17:00 Courtois, Hulme, Mourouzis:: Solving circuit optimisation problems
in cryptography and cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

17:00–17:05 Closing





1 SHARCS 2012 Workshop Record

CAESAR: Cryptanalysis of the Full AES Using
GPU-Like Hardware∗

Alex Biryukov and Johann Großschädl
University of Luxembourg

Laboratory of Algorithmics, Cryptology and Security (LACS)
6, rue Richard Coudenhove-Kalergi, L–1359 Luxembourg
{alex.biryukov,johann.groszschaedl}@uni.lu

Abstract: The block cipher Rijndael has undergone more than ten years of extensive cryptanalysis
since its submission as a candidate for the Advanced Encryption Standard (AES) in April 1998. To
date, most of the publicly-known cryptanalytic results are based on reduced-round variants of the
AES (respectively Rijndael) algorithm. Among the few exceptions that target the full AES are the
Related-Key Cryptanalysis (RKC) introduced at ASIACRYPT 2009 and attacks exploiting Time-
Memory-Key (TMK) trade-offs such as demonstrated at SAC 2005. However, all these attacks are
generally considered infeasible in practice due to their high complexity (i.e. 299.5 AES operations
for RKC, 280 for TMK). In this paper, we evaluate the cost of cryptanalytic attacks on the full AES
when using special-purpose hardware in the form of multi-core AES processors that are designed in
a similar way as modern Graphics Processing Units (GPUs) such as the NVIDIA GT200b. Using
today’s VLSI technology would allow for the implementation of a GPU-like processor reaching a
throughput of up to 1012 AES operations per second. An organization able to spend one trillion US$
for designing and building a supercomputer based on such processors could theoretically break the
full AES in a time frame of as little as one year when using RKC, or in merely one month when
performing a TMK attack. We also analyze different time-cost trade-offs and assess the implications
of progress in VLSI technology under the assumption that Moore’s law will continue to hold for the
next ten years. These assessments raise some concerns about the long-term security of the AES.

1 Introduction

Research on special-purpose hardware for cryptanalysis has a rich and illustrious history stretching back
almost hundred years [25, 40]. In 1938, Polish mathematicians led by Marian Rejewski constructed the
Bomba Kryptologiczna (or Bomba for short), an electromechanical machine that allowed them to break
the German Enigma cipher by exhaustively trying all 17,576 rotor positions. This success was expanded
by British cryptographers (most notably Alan Turing and Gordon Welchman), who designed ingenious
cipher-breaking machines enabling the Allied forces to read Enigma-encrypted messages during World
War II [44]. A parallel effort of cryptanalysis of another German cipher, the Lorenz SZ40/42, resulted
in the construction of Colossus, one of the world’s first programmable computers. Colossus contained
1,500 thermionic valves (vacuum tubes) and was able to process 5,000 characters per second.

In the 1980s, Pomerance et al [35] designed a hardware architecture called Quasimodo for factoring
large integers using the quadratic sieve algorithm. Quasimodo was actually built but never functioned

∗A revised version of this paper will be published in Fundamenta Informaticae, vol. 114, no. 3–4, pp. 221–237 under the
title “Cryptanalysis of the Full AES Using GPU-Like Special-Purpose Hardware.” Readers are requested to use the version in
Fundamenta Informaticae for citation purposes.
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properly. The DES Cracker (also known as Deep Crack) is a parallel key-search machine developed by
the Electronic Frontier Foundation (EFF) in the late 1990s with an overall budget of just 210,000 US$
[14]. Deep Crack consists of about 1,500 custom chips and needs at most nine days to find a 56-bit DES
key by “brute force.” Also in the late 1990s, Shamir [38] proposed TWINKLE, an electro-optical device
for performing the sieving step of the Number Field Sieve (NFS) algorithm. He estimated that a single
chip of the size of a 6-inch GaAs wafer would allow one to factor a 512-bit number in reasonable time
and, as a consequence, break 512-bit RSA keys. TWIRL, a successor of TWINKLE, could reduce the
total sieving time for 512-bit numbers to less than ten minutes [39]. Even though both TWINKLE and
TWIRL are purely hypothetical devices that were never built due to technical issues (e.g. too large chip
area) and high cost, they received considerable attention in the cryptographic community and initiated
a slew of follow-up research [16, 17]. Recent attempts to implement cryptanalytic devices mainly use
FPGAs as underlying hardware platform [30, 31]. A typical example is COPACOBANA, an FPGA-based
parallel machine for cryptanalysis that was successful in breaking some symmetric ciphers with a key
size of up to 64 bits, e.g. KeeLoq, DES, and A5/1 [27, 21].

The advent of powerful yet inexpensive multi-core processors, especially Graphics Processing Units
(GPUs), has triggered a large body of research to analyze their capabilities for cryptanalytic purposes
[20]. GPUs are particularly well suited for the implementation of multiplication-intensive cryptanalytic
algorithms that can be mapped efficiently onto a highly parallel architecture [3, 4]. Other cryptosystems
performing mainly logical operations have also been successfully attacked on various high-end graphics
platforms [12, 32]. While such software-based cryptanalysis on multi-core processors is relatively easy
to implement, it does not reflect the potential of custom hardware, simply because GPUs are optimized
for graphics (or multimedia) processing and not for cryptanalysis. The same holds, although to a lesser
extent, for FPGA-based cryptanalytic hardware: An ASIC designed and optimized from the ground up
to break a certain cryptosystem can reach higher clock frequencies (and consumes less power) than an
FPGA implementing the same functionality.

In this paper, we study the cost of a hardware-based attack on AES-128 and AES-256 assuming that
the attack complexity is bounded by 2100 computations. We are motivated by the recent progress in the
cryptanalysis of AES-256 [7], which has provided an attack with a time and data complexity of 299.5 and
a memory complexity of 278 in the related-key scenario (we will call this attack RKC, an abbreviation
for Related-Key Cryptanalysis). While it is clear that implementing this highly specific attack has little
practical impact due to its reliance on related keys, we believe that a more threatening secret-key attack
of complexity 2100 would not be much different in terms of hardware implementation cost, and thus we
can use the existing attack a case study. We also notice that the same hardware can, to a large extent, be
re-used for a Time-Memory-Key attack (TMK, also known as multiple target attack) on AES-128 [9]. In
such an attack it is assumed that a fixed plaintext is encrypted under many different secret keys, and the
goal of the attacker is to find one of these keys. Given e.g. 232 targets, the TMK attack has a one-time
pre-computation complexity of 296, after which each new secret key can be found with a time complexity
of 280 and a memory complexity of 256.

We evaluate the cost of these two attacks on the full AES assuming special-purpose hardware in the
form of multi-core AES processors that are realized in a similar way as modern Graphics Processing
Units (GPUs) such as the NVIDIA GT200b [33]. Using state-of-the-art VLSI technology, it is possible
to implement a GPU-like processor reaching a throughput of up to 1012 AES operations per second at a
cost of only about 30 US$. An organization able to spend one trillion US$ (which is roughly a single-
year defense budget of the US [42]) for designing and building a large-scale supercomputer based on
such optimized processors could theoretically break the full 256-bit AES in a time frame of as little as
one year when using RKC or another attack of similar complexity. One tenth of this budget (100 billion
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US$) would be sufficient to mount a TMK attack on 232 targets. This attack requires a one-time pre-com-
putation phase of one year, after which a new key can be recovered every 280 AES operations, or every
eight minutes, on this “smaller” supercomputer.

Our contribution in this paper is twofold. First, we present the architecture of a GPU-like multi-core
AES processor optimized for RKC and TMK attacks and discuss how the requirements for this special
processor differ from that of standard high-speed AES hardware with respect to pipelining options, sup-
port for key agility, and memory bandwidth. Second, we analyze the production cost and performance
of large-scale cryptanalytic hardware built of GPU-like processors and estimate the running time of the
RKC and TMK attack on the full AES. More precisely, we try to provide a realistic lower bound for the
time and energy required to perform these attacks when using a cryptanalytic supercomputer consisting
of 1010 optimized AES processors. This supercomputer, which we call CAESAR (“Cryptanalytic AES
ARchitecture”), is a hypothetical machine (like TWINKLE and TWIRL) since an actual implementation
of the proposed GPU-like AES processor is beyond our resources. However, we point out that, unlike
TWINKLE, our AES processor can be implemented with present-day VLSI technology since its silicon
area, clock frequency, and power consumption are quite similar to that of a commodity GPU. We also
analyze different time-cost trade-offs and try to assess the implications of progress in VLSI technology
under the assumption that Moore’s law will continue to hold for the next ten years.

2 Cryptanalytic Attacks on AES

The cipher Rijndael has been a subject of intensive cryptanalysis already during the AES-competition
and in the past ten years after it has been adopted as a new encryption standard by NIST. In this sec-
tion, we highlight the main advances in cryptanalysis of the AES and describe two of these approaches
in more detail.

The first cryptanalysis of 6-round AES was provided by its designers [13], who have shown how to
break six rounds of AES-128 using a multiset attack (historically called Square attack). During the AES
competition, two other attacks were described. The first was the partial-sum approach [15], which used
the same ideas as the designer’s attack, but managed to reduce the time complexity for a 6-round attack
from 270 to 244. The second was a novel functional-collision technique [18], which also falls into a class
of multiset attacks and is capable of breaking up to seven rounds of AES-128 marginally faster than an
exhaustive key search. Rijndael was announced as a NIST standard in November 2001. In the following
eight years, there were many attempts of cryptanalysis (boomerang attack, impossible differentials, alge-
braic attack, various related-key attacks); however, the progress was very slow and mainly restricted to
related-key attacks on 192 and 256-bit AES. The best of these attacks reached seven rounds (out of ten)
for AES-128, and ten (out of 12 or 14) rounds for AES-192 and AES-256, all with complexities close to
that of an exhaustive search.

In 2009, new related-key and open-key attacks capable of breaking the full AES-192 and AES-256
were discovered. The attack on 256-bit AES initially had a complexity of 296 data and time and worked
for one out of 235 keys, i.e. it had a total complexity of 2131 steps [8]. This attack used simple key rela-
tions of the form K′ = K ⊕C, where K,K′ are two unknown but related keys and C is a constant chosen
by the attacker. In Section 2 of the same paper, a practical chosen-key distinguisher for AES-256 was
demonstrated. Later in the same year, the attack on AES-256 was significantly improved to run with a
time and data complexity of 299.5 using a boomerang related-key attack and the related subkey setting in
which K′ = F−1(F(K)⊕C) = RC(K), where function F is one round of the AES-256 key-schedule and
C is a constant chosen by the attacker [7]. Even though these attacks reveal a certain structural weakness
of the key-schedule of AES-192 and AES-256, they are of no immediate threat in practice due to two
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Table 1: Summary of attacks on AES.

Cipher Attack/Result Rounds Data Workload Memory Reference
AES-128 Multiset 6 233 270 232 [13]

Collisions 7 232 2128 280 [18]
Partial sum 6 235 244 232 [15]
Partial sum 7 2128 −2119 2120 232 [15]
Boomerang 6 271 271 233 [6]
Impossible diff. 7 2112.2 2117.2 2109 [29]
Boomerang - RK 7 297 297 234 [10]

AES-192 Rectangle - RK 9 264 2143 ? [19]
Rectangle - RK 10 2125 2182 ? [26]
Boomerang - RK 12 2116 2169 2145 [10]

AES-256 Rectangle - RK 10 2114 2173 ? [5, 26]
Subkey Diff. 10 248 249 233

Differential - RKa 14 2131 2131 265 [8]
Boomerang - RK 14 299.5 299.5 278 [7]

aThe attack works for a weak key class, and the workload includes the effort to find related keys from the class.

factors: First, the related-key scenario is a very strong attacker model and, second, the attack requires a
huge amount of both time and data. Nonetheless, they are the first attacks on the AES that have broken
through the psychological 2100 complexity barrier, which may motivate cryptanalysts to pay increased
attention to the AES in the coming years. A summary of attacks on AES is given in Table 1.

A completely different approach to cryptanalysis of block ciphers is possible by exploiting a Time-
Memory-Key (TMK) trade-off. Such trade-offs can be used to invert any one-way function. The original
Time-Memory trade-off was introduced by Hellman [22] and required a single pre-computation equal in
complexity to the full exhaustive search. Later, Biryukov and Shamir [11] presented a Time-Memory-
Data trade-off as a generalization of Hellman’s method, which added more flexibility by introducing an
extra data parameter into the trade-off equations and, as a consequence, allowed to considerably reduce
the heavy pre-computation phase of the original trade-off. In [9], an application of trade-off attacks to
multiple target attacks on block ciphers has been studied. The introduced TMK attack requires a fixed
plaintext to be encrypted under D unknown secret keys and the goal of the attacker is to find one of these
keys. It was shown that, in this scenario, it is impossible for a cipher with a keylength of n bits to stand
to its complexity guarantee of 2n since any cipher can be broken in time O(2n/D) and with considerably
less memory (i.e. a lot better than what a straightforward birthday trade-off would suggest).

The following two subsections summarize the details of the related-key and trade-off attack on the
full AES that are needed to understand our estimates for a large-scale hardware implementation of these
attacks. The reader is referred to the original papers [7, 9] for a full description.

2.1 Summary of the Related-Key Boomerang Attack on AES-256

This type of attack is embedded in a scenario of four secret related keys; it needs 299.5 time and data to
find these keys. The attack works as follows. Repeat the following steps 225.5 times:

1. Prepare a structure with all possible values in column 0, row 1, and the main diagonal (nine bytes
in total), and constant values in the other bytes (272 plaintexts).

2. Encrypt it on keys KA and KB and keep the resulting sets SA and SB in memory.
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3. XOR ∆C to all the ciphertexts in SA and decrypt the resulting ciphertexts with KC. Denote the new
set of plaintexts by SC.

4. Repeat previous step for the set SB and the key KD. Denote the set of plaintexts by SD.

5. Compose from SC and SD all the possible pairs of plaintexts which are equal in certain 56 bits.

6. For every remaining pair check if the difference in pi,0, i > 1 is equal on both sides of the boomer-
ang quartet (16-bit filter).

7. Filter out the quartets whose difference can not be produced by active S-boxes in the first round
(one-bit filter per S-box per key pair) and active S-boxes in the key schedule (one-bit filter per
S-box), which is a 2 ·2+2 = 6-bit filter.

8. Gradually recover key values and differences simultaneously filtering out the wrong quartets.

The time and memory complexity of this attack can be evaluated as follows. From 272 texts per struc-
ture we could compose 2144 ordered pairs, of which 2144−8·9 = 272 pairs pass the first round. Thus, we
expect one right quartet per 296−72 = 224 structures, and three right quartets out of 225.5 structures. Let
us now calculate the number of noisy quartets. Roughly 2144−56−16 = 272 pairs come out of step 6. The
next step applies a 6-bit filter, which means we get 272+25.5−6 = 291.5 candidate quartets in total. Note
that we still do not store these quartets. For each quartet we check what key candidates it proposes on
both sides of the boomerang; this process allows us to gradually reduce the number of candidate quartets
to 272.5 as shown in [7]. Each candidate quartet proposes 26 candidates for 11 key bytes for each of the
four related keys. However, these bytes are strongly related, and so the number of independent key bytes
on which the voting is performed is significantly smaller than 11×4, namely about 15. The probability
that three wrong quartets propose the same candidates does not exceed 2−80. Thus, it can be estimated
that the complexity of the filtering step is 278 in time and memory. In total, we recover 3 ·7+8 ·8 = 85
bits of KA (and 85 bits of KC) with 299.5 data and time and 278 memory. The rest of the key bits can be
recovered with negligible complexity compared to the main phase of the attack.

2.2 Summary of a Time-Memory-Key Attack on AES-128

Hellman’s trade-off [22] is a well-known way to invert arbitrary one-way functions. The main idea is
to iterate a one-way function on its own output, thereby computing a chain, and then to discard all the
computed points keeping only the start-end point pairs in memory, sorted by the end points. During the
attack, the attacker iterates the function starting from the given ciphertext and checks at each step if he
has hit one of the end points1. He then picks the corresponding starting point and iterating from it finds
the pre-image from the function. In the context of block ciphers with reasonably long keys this attack
is typically not considered to be of a threat since the pre-computation time needed to build the tables
containing all start-end points is the same as the exhaustive search of the key.

The main idea of the Time-Memory-Key (TMK) trade-off is that we can cover only a fraction of the
search space if multiple targets are available. This is typically the case when messages (or files) with the
same constant header are encrypted under different keys. Let us denote by N = 2n the size of the search
space (n = 128 for AES-128). Given encryptions of a fixed plaintext under Dk different keys, we need
to cover only N/Dk points of the space. Hence, we will use t/Dk tables instead of t, which means the
memory requirements drop to M = mt/Dk (here m is the number of start-end points in one Hellman’s

1The need to perform memory access at each iteration can be avoided by using the idea of distinguished points, i.e. the
attacker does not perform memory access until a point he obtained has some distinguishing feature (e.g. l leading zeroes).
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Table 2: Comparison of TMD attacks on various ciphers.

Cipher Key size Keys (Data) Time Memory Preprocessing
DES 56 214 228 228 242

Triple-DES 168 242 284 284 2126

Skipjack 80 232 232 232 248

AES 128 232 280 256 296

AES 192 248 296 296 2144

AES 256 285 2170 285 2170

Any cipher k 2k/4 2k/2 2k/2 23k/4

Any cipher k 2k/3 22k/3 2k/3 22k/3

Table 3: Trade-off attacks on 128-bit key AES (and any other 128-bit key cipher).

Attack Data Type Keys (Data) Time Memory Preprocessing
BS TMD FKP 28 2120 260 2120

BS TMD FKP 220 2100 258 2108

BS TMD FKP 232 280 256 296

BS TMD FKP 243 284 243 285

table). The time requirements T = t/Dk · t ·Dk = t2 are the same as in Hellman’s original trade-off (we
have less tables to check, but for more data points). Finally, the matrix stopping rule is N = mt2, which
is the condition to minimize the “waste” in the matrix coverage due to birthday paradox effects. Using
this matrix stopping rule and eliminating the parameters m and t, we get the trade-off formula

N2 = T (MDk)
2.

Taking AES with 128-bit key as example and assuming an attacker given 232 encryptions of a fixed text
under different unknown keys, he can recover one of these keys after a single pre-processing of 296 steps
and using 256 memory entries for table storage (261 bytes) and 280 time for the actual key-search.

Another important observation is that the attack is not exactly a chosen plaintext attack since the
specific value of the fixed plaintext is irrelevant. Thus, in order to obtain an attack faster than exhaustive
search, the attacker should first try to find out which plaintext is the most frequently used in the target
application, collect the data for various keys, and then perform the actual attack. The results summarized
in Table 2 compare favorably with the best attacks on such ciphers as DES, Triple-DES, Skipjack, and
AES. Moreover, the scenario of TMD attacks is much more practical than that of related-key attacks. We
provide several trade-off points for AES-128 in Table 3.

3 GPU-Like AES Processor for Cryptanalysis

In this section, we introduce the architecture and functionality of a high-speed AES processor optimized
for cryptanalytic attacks following the TMK trade-off and the RKC method as discussed above. From an
architectural point of view, this AES processor is basically a homogenous multi-core system with local
cache and shared memory, similar to present-day Graphics Processing Units (GPUs) such as NVIDIA’s
GT200b [33]. It consists of a large number of programmable high-speed AES engines that can work in
parallel, controlled by a small number of general-purpose processing units. The AES engines are opti-
mized for the requirements and characteristics of the cryptanalytic attacks described in Section 2.
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The AES engines of our processor differ greatly from a “conventional” high-speed AES hardware
implementation such as the one that Intel announced to integrate into the Westmere micro-architecture
and its successors. For example, in our processor the plaintexts to be encrypted do not need to be loaded
from “outside”, but are either constant (in case of the RKC attack) or can be easily generated on chip (in
case of the TMK trade-off). The same holds for the keys; they are either constant over a large number
of encryptions or can be generated on-chip. Another major difference between our AES engine and
general-purpose AES hardware is that we do not need to support a mode of operation, which allows for
pipelining the datapath.

There exists a rich literature on high-speed AES hardware architectures, targeting both FPGA and
standard-cell implementations. Hodjat and Verbauwhede present in [23, 24] the design of an AES data-
path that fulfills most of the requirements for use in cryptanalysis mentioned above. Their datapath has a
width of 128 bits and implements both inner-round and outer-round pipelining, which means that a new
plaintext can be fed into the circuit every clock cycle. Every round is performed in four cycles and the
plaintext has to pass through a total of 10 rounds, which results in a latency of 41 clock cycles altogether
(including one cycle for the initial key addition). Hodjat and Verbauwhede also report implementation
results based on a 0.18 µm standard cell library. Due to the massive pipelining, the AES datapath can be
clocked with a relatively high frequency of 606 MHz, yielding a throughput of 77.6 Gbit/s. The overall
silicon area is about 473k gates for a 10-round implementation; the area of a 14-round datapath (for keys
up to 256 bits) can be estimated to be roughly 660k gates. However, the throughput is independent of the
length of the datapath (and also of the key size) since the plaintexts are always processed at a rate of one
128-bit block per cycle.

As mentioned before, the proposed multi-core processor for cryptanalysis of the AES follows the
architectural model of modern GPUs such as the NVIDIA GT200b2. The GT220b architecture is based
on a scalable processor array and consists of 240 streaming-processor cores (so-called “shader” cores),
each of which can execute up to three floating-point operations per cycle (e.g. two multiplications and
one addition). Assuming that the shader cores are clocked with a frequency of 1476 MHz (e.g. GeForce
GTX 285 video card [33]), the theoretical performance of the GT200b exceeds 1000 single-precision
GFLOPS. For comparison, a high-end CPU such as the Intel Core-i7 reaches just slightly more than
100 GFLOPS when clocked at its maximum frequency of 3.33 GHz, i.e. the performance gap between
current-generation CPUs and GPUs is about an order of magnitude. The GT200b consists of 1.4 billion
transistors (i.e. 350M gates) covering a 470 mm2 die area built on a 55 nm CMOS process [33].

Our AES processor is a multi-core system consisting of 500 AES engines based on Hodjat’s design
as sketched above. Each AES engine has an area of 660k gates, which amounts to a total of 330M gates
for 500 engines. When including other building blocks (e.g. host interface, small local memory, interface
to external memory, etc.), it can be expected that the overall silicon area of our AES processor will be
roughly comparable to that of the GT200b. However, we assume the AES engines to be clocked with a
frequency of 2.0 GHz, which should be easily possible when considering that Hodjat’s implementation
reached a frequency of 606 MHz on basis of an old 0.18 µm process that is significantly slower than the
recent 55 nm TSMC technology. Of course, cranking up the clock speed will also increase power con-
sumption, but the additional heat can be controlled by better cooling, as will be discussed in more detail
in Section 5. Each AES engine can encrypt plaintexts at a rate of one 128-bit block per cycle, yielding
an overall throughput of 500×2 ·109 = 1012 AES operations per second. Interestingly, these 1012 AES
operations per second match exactly the 1000 GFLOPS per second of the GT200b.

2Recently, NVIDIA introduced a new generation of GPUs based on the Fermi architecture, which consists of 3.0 billion
transistors and is manufactured in a 40 nm process. Even though Fermi-based GPUs, such as the GF110, are superior to the
GT200b in both performance and energy efficiency, we decided to stick with the GT200b as reference since it has been widely
used for the implementation of cryptographic software and is, therefore, well known in the research community.
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4 Memory Throughput and Storage Requirements

Looking at the raw complexity figures of the RKC and TMK attack, it is obvious that memory capacity
(and throughput) is the most critical issue after computation time. In fact, the main bottleneck of many
high-performance applications is memory bandwidth, i.e. the speed with which data can be transferred
between memory (i.e. RAM) and the functional units of the processor where the actual computation is
performed. However, in analogy to our argumentation from previous section, we have to point out first
that both cryptanalytic attacks considered in this paper have very special requirements with respect to
memory and storage, which differ greatly from the requirements of “general-purpose” applications. This
difference is especially pronounced with respect to key agility. While support of key agility is important
for many “conventional” hardware implementations, it is not an issue for the RKC attack since there are
only four keys in total. In case of the TMK attack, key-agility is important, but the keys can be generated
on chip. The plaintext is kept fixed during the whole attack.

Given the high performance of our processor (500 AES operations per clock cycle), one may expect
that memory bandwidth is a limiting factor since plaintexts can hardly be loaded at a rate of 500×16 =
8000 bytes per cycle. Fortunately, the plaintexts processed in both the RKC and TMK attack do not need
to be loaded from off-chip memory, but can be generated on-chip. In the former case (RKC attack), the
plaintexts can be generated in a very straightforward way using a plain counter. The TMK attack, on the
other hand, executes encryption chains in the pre-computation phase, i.e. the output of an AES operation
is input to the next one, whereby a simple modification of the output (e.g. a bit permutation) is carried
out in between. However, this modification can be easily implemented in hardware and does not impact
the throughput of the AES processor. The situation is similar for the ciphertexts. When performing an
RKC attack, only very few ciphertexts are actually stored, i.e. the throughput with which data is moved
to off-chip storage is several orders of magnitude lower than the AES processing rate.

Even though only a small fraction of the ciphertexts are actually stored, the storage requirements
of the RKC attack are still enormous, namely 278 bytes. This amount is needed for storage of four 272

structures of 16-bytes and is unavoidable unless a better differential is found. The attack also needs an
array of 278 counters in the final stage, but this part can be optimized to consume less memory. Storage
of such size can only be realized in a distributed fashion, e.g. by attaching a high-capacity harddisk to
each AES processor. The CAESAR supercomputer described in the next section consists of 3 ·1010 AES
processors (and therefore we also have 3 · 1010 harddisks), which means each harddisk must provide
a capacity of slightly less than 10 TB. However, the state-of-the-art (as of 2011) are harddisks with a
capacity of 2.5 TB, costing 100 US$ when purchased in large quantities. Nonetheless, we argue that the
enormous storage requirements do not render the RKC attack infeasible, at least not when taking into
account recent technical innovations. For example, researchers at the A*STAR Institute of Materials
Research and Engineering have been able to fabricate magnetic storage media with a density of 3.3 Tb
per inch2, thereby improving the state-of-the-art by a factor of six [1]. Hitachi is striving to make a
technology called Two-Dimensional Magnetic Recording (TDMR) ready for mass production, which
could boost storage density to up to 10 Tb per inch2 [45]. Therefore, it is not unrealistic to assume that
100 TB harddisks can be mass produced for just 100 US$ within the next 5–10 years. Such a 100 TB
harddisk could be shared by 10 AES processors. Consequently, the overall cost of storage for the RKC
attack (i.e. 3 ·109 harddisks of 100 TB each) would amount to roughly 300 billion US$.

The storage requirements of the TMK attack are 256 ·16 ·2 = 261 bytes, which will cost in 5–10 years
only 2.3 million US$ (or 92 million US$ with present-day technology and prices). As mentioned in
Section 2, only the start and endpoints of the encryption chains generated in the pre-computation phase
of the TMK attack are actually stored. The situation is similar for an RKC attack since only a very small
fraction of the ciphertexts actually needs to be stored. In order to simplify the estimation of the time
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required for an RKC or TMK attack, we assume that storing data on the harddisks, as well as any sub-
sequent operation accessing the stored data, does not slow down the attack (i.e. the overall attack time is
primarily determined by the AES operations and not by accesses to memory or storage). This assumption
is justified in the context of the present paper for two reasons. First, the rate at which data is transferred
to and from storage is a factor of (at least) 221 lower than the AES processing rate. Second, as stated in
Section 1, we aim to estimate a lower bound for the time and energy required to perform an attack.

5 Evaluation of Attack Time and Energy

To assess the feasibility of the RKC and TMD attack using “GPU-like” special-purpose hardware, we
make the following assumptions about the adversary. We assume an extremely powerful adversary with
huge resources in terms of both financial means and expertise in cryptanalysis, which can be expected
to be the case for the national security agencies and/or defense departments of certain countries. More
precisely, we assume that the adversary has a budget of 1 trillion (i.e. 1012) US$ at its disposal for the
design and manufacturing special-purpose hardware (i.e. GPU-like processors). Based on these highly
optimized processors, the adversary can build a large-scale supercomputer for cryptanalytic attacks on
the AES; we call this supercomputer CAESAR (short for Cryptanalytic AES ARchitecture). A budget
of 1 trillion US$ is not completely unrealistic when considering that the overall amount the US spends
for military and national defense is estimated to be between 880 billion and 1.03 trillion US$ in fiscal
year 2010 [42].

We furthermore assume that the adversary has additional funds to cover other expenses such as
designing the AES processor, designing and implementing dedicated storage for the TMD attack, oper-
ating the CAESAR supercomputer for a certain period of time (which is primarily energy costs), and so
on. The exact amount of money needed for these additional expenses depends on many different factors
(e.g. the resources of the adversary). For example, the adversary could be an organization that possesses
its own power plants, which significantly reduces the cost for operating large server farms to house the
CAESAR supercomputer. In any case, it can be expected that these additional costs will be considerably
below the 1 trillion US$ we assume for the manufacturing of AES processors; a reasonable estimation is
500 billion US$. Again, a total funds of 1.5 trillion US$ is not completely unrealistic when taking the
annual budget deficit of the US as reference, which is expected to exceed 1.4 trillion US$ in the fiscal
year 2009 [2].

The next question to answer is how many AES processors can be produced for 1 trillion US$. We
take again the NVIDIA GT200b as reference since our optimized processor housing 500 AES engines
has roughly the same silicon area as the GT200b, which means that the manufacturing costs should be
very similar. Unfortunately, we were not able to find a reliable source for the manufacturing cost of a
GT200b processor. However, what is publicly known are the retail prices of complete graphics/video
cards containing the GT200b. For example, the GeForce GTX 285 [33], a graphics card equipped with
a GT200b processor clocked at 1476 MHz, retails for less than 300 US$. The GeForce GTX 295 [34]
is a graphics card housing two GT200b processors that costs less than 400 US$. However, it must be
considered that both are complete graphics cards that do not only contain GT200b chips, but also large
amounts of fast memory and several other components. Furthermore, we have to take into account that
the quoted retail prices include gains for the producer and retailer(s), NRE costs, as well as other costs
such as VAT. Therefore, it can be assumed that manufacturing a GT200b chip costs significantly less
than 100 US$. The cost of one of our AES processors will be even much lower since, for example, the
NRE costs are negligible when producing a very large number of chips. Taking all this into account, we
can estimate a lower bound of 30 US$ for the manufacturing cost of a single AES processor.
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Having a budget of 1 trillion (i.e. 1012) US$ for chip production (and assuming a reasonably high
yield) means that the adversary gets a total of about 3 ·1010 AES processors, each of which can perform
1012 AES operations per second (see Section 3). Consequently, the overall throughput of all processors
of CAESAR amounts to roughly 3 · 1022 AES operations per second. The RKC attack as described in
Section 2 requires the adversary to perform 299.5 ≈ 9 ·1029 AES operations, which can be accomplished
in just 3 · 107 seconds (i.e. approximately one year) on the CAESAR supercomputer. Of course, these
estimations are based on “best-case” (yet not unreasonable) assumptions and should be considered as a
lower bound for the execution time of this key-recovery attack given a budget of 1 trillion US$ for chip
production.

The situation is similar for the TMK trade-off attack in the sense that the AES operations dominate
the overall execution time by far. However, TMK attacks, as mentioned in Section 2, are performed in
two phases; an off-line (i.e. pre-computation) phase in which tables containing the start and endpoints
of encryption chains are generated, and an online phase in which pre-images of data points are searched
in the tables. Let us consider an example of a TMK attack in which the adversary is given 232 encryptions
of a fixed plaintext under different (but unknown) keys. To recover one of these keys, the adversary has
to carry out 296 AES operations during the pre-computation phase, as well as 280 AES operations in the
online phase. Similar to the RKC attack, the inputs for the AES operations carried out in the pre-compu-
tation phase do not need to be loaded from an external source, but can be generated on-chip3. Only the
start and end-point of the encryption chain are actually stored in the table, which means that the memory
bandwidth can be orders of magnitude lower than the AES throughput. In our case, the pre-computed
tables contain 256 data points (i.e. 128-bit ciphertexts) altogether. If we assume again 3 ·1010 GPU-like
AES processors with an overall throughput of 3 ·1022 AES operations per second, the 296 AES operations
carried out in the off-line phase take about 30.6 days. The 280 AES operations of the on-line phase are
negligible in relation to the execution time of the off-line phase, which means the overall attack time is
primarily determined by the pre-computation of the tables. However, this pre-computation is a one-time
effort because the same set of tables can be used to recover other keys. If one is willing to wait for one
year until the pre-computation is finished, then he needs less than one tenth of the attack budget. On
such a “smaller” supercomputer, solutions will still be generated at an amazing speed of eight minutes
per 128-bit key.

5.1 Further Considerations

Besides execution time and memory requirements, there are a number of other factors that need to be
taken into account when studying the feasibility of a large-scale supercomputer for cryptanalysis of the
AES like CAESAR. In the following, we try to estimate the time it takes to manufacture 3 · 1010 AES
processors and the energy these processors consume when clocked with a frequency of 2.0 GHz.

A state-of-the-art fab for chip production, such as the one mentioned in [36], has an overall capacity
of 300,000 wafers per month. Given a diameter of 300 mm, the silicon area of a single wafer amounts to
70,685 mm2. In Section 3, we argued that a GPU-like processor housing 500 AES engines would have
roughly the same gate count as the NVIDIA GT200b, hence it is sensible to assume that its silicon area
will be in the same range, namely 470 mm2 on basis of the 55 nm TSMC technology. Consequently, 150
AES processors can theoretically be obtained from a 300 mm wafer. However, given a typical yield
of 75% and taking edge dies into account, it can be estimated that we get out some 100 AES processors
per wafer. A high-capacity fab would be able to produce 3 · 107 chips in one month, or 3.6 · 108 chips

3More precisely, the input (i.e. plaintext) of a given AES encryption is always fixed and the output (i.e. ciphertext) of the
previous AES encryption is used as a new key, after a simple modification (e.g. a fixed bit permutation). This simple modifica-
tion of the output bits can be easily implemented in hardware and does not impact the throughput of the AES processor.
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per year. Consequently, the total production time for 3 ·1010 AES processors amounts to approximately
83 years. Accordingly, the time would drop to one year when the chip production is distributed to 83
high-capacity fabs. Note that the fab mentioned in [36] was constructed in 18 months and required an
investment of 1 billion US$. A well-funded adversary (as assumed in this paper) may even consider to
construct its own high-capacity fabs and operate these fabs solely for the production of GPU-like AES
processors.

NVIDIA’s GeForce GTX285, a graphics card equipped with a GT200b processor, has a maximum
power consumption of 204 W [33]. In this card, each of the 240 shader cores of the GT200b is clocked
with a frequency of 1476 MHz. On the other hand, the GeForce GTX295 houses two GT200b, but their
shaders are clocked with a slightly lower frequency of 1242 MHz. Its maximum power consumption is
289 W as specified in [34]. However, it must be considered that these figures refer to the power con-
sumption of the “whole” graphics card, which includes besides the GT200b processor(s) also several
other components, in particular large amounts of memory. Therefore, it can be estimated that a GT200b
processor clocked at 1476 MHz consumes approximately 100 W. Our AES processor is operated at a
slightly higher frequency (2.0 GHz4 instead of 1476 MHz) and, as a consequence, its power consumption
will rise by the same factor to 135 W. The power consumed by a mechanical harddisk depends, among
other things, on its spin speed and operation mode (e.g. read/write, idle, standby). A current-generation
7200 rpm harddisk, such as one of the Western Digital Caviar Black series [41], has an average power
dissipation of 10.7 W when reading or writing, 8.2 W when idle, and 1.3 W when in standby or sleep
mode. In contrast, so-called “green” harddisks with a spin speed of up to 5400 rpm (e.g. Western Digital
Caviar Green series) have power consumption figures of 6 W (read/write mode), 5.5 W (idle mode), and
0.8 W (standby mode). Consequently, a state-of-the-art harddisk dissipates less than one tenth of the
power of one of our AES processor. The power consumed by all 3 · 1010 AES processors amounts to a
whopping 4 TW, i.e. 4 · 1012 W. For comparison, the average total power consumption of the US was
3.34 TW in 2005 [43]. In summary, it can be concluded that the most limiting factor of attacking AES
using special-purpose hardware is neither the computation time nor the memory requirements, but the
power consumption of the hardware.

Does this enormous power consumption of our CAESAR supercomputer render RKC (respectively
TMK) attacks with a complexity of 299.5 (respectively 296) completely impossible? Not necessarily when
we consider Moore’s law: transistor sizes (and also power consumption) shrunk significantly with every
new process generation that was introduced during the past two decades. It is expected that Moore’s law
will continue to hold—and transistor sizes will continue to shrink—for another ten years, though at a
slightly lower rate than in the past [28]. For example, TSMC estimates a transistor size of only 7 nm in
2020, which is eight times smaller than the transistor size of the 55 nm TSMC technology under which
the GT200b processor is produced. Using a 7 nm technology for our AES processor would result in a
power consumption that is only a fraction of the 135 W we used for the evaluation above. Estimations
beyond the ten-year horizon are rather difficult since future VLSI technology must not necessarily be
silicon-based. However, the following historical example may help to understand the progress in VLSI
technology. The first supercomputer that reached a performance of 1 TFLOPS (i.e. 1000 GFLOPS) was
the ASCI Red, built in 1997 by Intel and operated by Sandia National Labs. ASCI Red housed almost
10,000 Pentium Pro processors and had a power consumption of roughly 500 kW. Today, a single GPU
like the GT200b reaches the same performance, but does so at a power consumption of only 100 W (see
above). Consequently, the power consumption per TFLOPS dropped from 500 kW in 1997 to 100 W in
2010, which corresponds to a factor of 5,000.

4The increased amount of heat due to the higher clock frequency can be handled through better cooling, e.g. by adding a
liquid cooling system. Liquid cooling, even with “warm” water, can be 4000 times more effective than air cooling [37].



Biryukov, Großschädl
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5.2 Outlook into the Future

In this subsection, we briefly mention some factors that can significantly decrease the cost of hardware
attacks on AES in the future (10–20 years from now). These factors are:

• Moore’s law continuing to hold for another ten years, albeit at a slightly reduced speed.

• Cryptanalytic breakthroughs can entail spectacular reductions in attack complexity. However, the
cryptanalytic progress for AES does not follow a steady and predictable flow. It is hard to make
any predictions based on the time-line of the past attacks since they were very sporadic.

• Computers based on spin (so-called magneto-electronics or spintronics) may significantly reduce
power consumption.

• The use of optical computers may also significantly reduce the power consumption of large-scale
cryptanalytic hardware.

• Progress in miniaturization may lead to magnetic storage cells of the size of a few atoms. The
currently smallest memory-storage element, developed at IBM Research, consists of only 12 iron
atoms.

• 3D optical data storage is one of the technologies that could increase storage density and hence
decrease the memory cost of attacks. For example, optical disks of 1 PB (i.e. 1015 bytes) having
the size of a DVD (and a similar price) are conceivable. Such disks will use more than 100 optical
layers.

• Electronic quantum holography: Superimposing images of different wavelengths into the same
hologram on copper medium can increase memory density spectacularly. For example, a density
of 35 bits per electron (which is way below the supposed limit of one atom representing one bit)
was demonstrated in 2009 using this technique5.

6 Conclusions

In this paper, we investigated the feasibility of large-scale hardware attacks on AES-128 and AES-256
bounded by a time complexity of 2100. We described CAESAR, a hypothetical supercomputer consist-
ing of 3 ·1010 GPU-like AES processors, each of which can reach a throughput of 1012 AES operations
per second. CAESAR could be built with a total budget of roughly 1.5 trillion US$ (or with 1 trillion
US$ solely spent for chip fabrication) and would be capable of performing up to 3 ·1022 AES operations
per second, or approximately 9 · 1029 ≈ 299.5 AES operations in a year. Table 4 summarizes the main
characteristics and capabilities of CAESAR along with the complexities of the TMK and RKC attack on
AES-128 and AES-256, respectively. Our evaluation shows that a TMK trade-off attack on AES-128
using 232 targets is well within reach with current VLSI technology. CAESAR requires about 30 days
for the pre-computation phase, after which each new 128-bit key out of the pool of 232 targets can be
found in negligible time. A smaller variant of CAESAR costing 100 billion US$ is able to break a new
key every eight minutes, but needs a year to pre-compute the tables. We also studied the RKC attack on
AES-256 and identified the huge memory complexity (and resulting storage cost) of 278 as a limiting

5Overall, in the field of digital storage there seem to be several competing technologies, which are of very different physical
nature and in which progress happens in sudden leaps, rather than a monotone growth. There is also a negative effect of well-
developed technologies that come close to their physical limits, but still act as a barrier to the development of new revolutionary
ideas due to high initial costs.
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Table 4: Main characteristics of CAESAR and summary attack complexities.

One AES engine: 660K gates 2GHz clock speed
One AES processor: 500 AES enginesa 1012 AES ops/ s 30 US$b

CAESAR supercomputer: 3 ·1010 AES processors 3 ·1022 AES ops/s 1 trillion US$
AES chip production: 83 high capacity fabs approx. 1 year 83 bln US$
Power consumption: 135 W per processor 4 TW = 4 ·1012 W
RKC Attack: 9 ·1029 AES ops approx. 1 year
Storage RKC: 278 bytes 300 bln US$c

TMK Attack (232 targets): 0.8 ·1029 pre-computation 30.6 days
TMK Attack (232 targets): 1024 ops per AES key negligible
Storage TMK: 261 bytes 92 mln US$

aA 470 mm2 die on 55nm TSMC CMOS process with 330M gates.
bThis is a lower bound.
cEstimate for the next 5–10 years.

factor, even though CAESAR could perform the required 299.5 AES operations in roughly one year. In
summary, our work shows that the main bottlenecks of large-scale cryptanalytic hardware for breaking
the AES are neither execution time nor production cost, but rather power consumption and high memory
complexity. Therefore, we recommend cryptanalysts to focus on attacks with a time complexity of up to
2100 and a memory and data complexity of less than 270.
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Abstract. Biclique cryptanalysis was recently used to claim the first attack on AES-128 without
related keys. However, compared to a simple brute force attack, the method is more complicated,
and its data requirements are much higher (288 chosen ciphertexts). Still, the theoretical speed gain
over brute force search was small.
We show in this paper for the first time a practical implementation of a biclique attack on AES, using
a parallel FPGA machine and ASICs, with a practical data complexity of only 16 chosen plaintexts,
and still gaining almost a factor 2 over optimized brute force search.

1 Introduction

After 15 years of intensive cryptanalytic efforts, the full version of Advanced Encryption Standard
(AES) has recently been claimed vulnerable to a new class of cryptanalytic techniques based on so
called bicliques. Starting as an extension to meet-in-the-middle attacks on hash functions (initial
structures) [6, 11], bicliques have demonstrated their potential in attacks on the full AES [10],
full IDEA [8], and several other designs. As presented in [2, 5], the theoretical complexity of
bicliques attacks is lower than that of brute force attacks for the ciphers considered. However, it
is an open research problem whether such a reduction in complexity can be achieved in an actual
implementation.

The paper at hand answers this question in the affirmative. As a test case, we considered AES,
which is arguably the most widely used cipher in the world. In this paper, we demonstrate that
with a carefully optimized hardware architecture it is possible to accelerate an AES brute-force
attack by a factor of almost 2. Given the complexity of the attack relative to the extremely simply
structure of a brute-force attack, our finding is somewhat surprising. Interestingly, the gain of a
factor of approximately 2 is close to the predicted theoretical improvement which can be achieved
through biclique attacks. Even though we only considered AES for our architecture, it seems highly
likely that a similar approach can be used for other ciphers which can be attacked with bicliques [1,
9, 5]. We used the RIVYERA parallel FPGA machine [13], a successor of the COPACOBANA
special-purposed machine [7], as implementation platform. RIVYERA is among the most powerful
hardware-based cryptanalytical machine available (outside government agencies, that is), and
provides thus absolute numbers for the attack which are of high practical relevance. In order
to obtain fair results, we first designed and implemented an architecture for a highly optimized
brute-force attack against AES. The key subspace to be searched can be defined by the user.
Using this as a starting point, we implemented a biclique attack which improved the complexity.

Our paper demonstrates that the structural weakness on which the biclique attack is based
can in fact be exploited for practical attacks. As a consequence, applications which do not make
use of the full key space of ciphers such as AES (e.g., because there is not enough entropy in
the system for key generation) have to be re-calibrated with respect to the actual security they
provide. Methods such as hashing a low-entropy string, e.g., one derived from a user-entered
password, will render our bicliques architecture very difficult. However, it seems very likely that
there are many applications, e.g., in the embedded domain, which simply use n bits, n < 128, as
direct input to AES. For such applications our hardware-based attack can constitute a threat.
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2 Low data complexity biclique cryptanalysis of AES-128

In here, we describe our new low data complexity key recovery for AES-128. It requires only 16
chosen plaintexts, works with computational complexity 2126.89 and has success probability 1.

Our key recovery uses the ideas of bicliques, though we do not introduce the theoretical
concept of bicliques formally here and choose to describe the flow of the key recovery in a more
concrete way to favour the simplicity and intelligibility of description. In this way, we also aim to
facilitate the understanding of our subsequent implementation in hardware. For background on
biclique cryptanalysis of block ciphers, the reader is referred to [2].

2.1 AES-128

For the sake of clarity, we will be trying to reuse as much notation as possible from [2]. This also
applies to the notations regarding the description of AES-128.

AES-128 is a block cipher with 128-bit internal state and 128-bit key K. The internal state is
represented by a 4 × 4 byte matrix, and the key is represented by a 4 × 4 matrix. The plaintext
is xored with the key, and then undergoes a sequence of 10 rounds. Each round consists of four
transformations: nonlinear bytewise SubBytes, the byte permutation ShiftRows, linear transfor-
mation MixColumns, and the addition with a subkey AddRoundKey. MixColumns is omitted in
the last round.

SubBytes is a nonlinear transformation operating on 8-bit S-boxes. The ShiftRows rotates
bytes in row r by r positions to the left. The MixColumns is a linear transformation with branch
number 5, i.e. in the column equation (u0, u1, u2, u3) = MC(v0, v1, v2, v3) only 5 and more vari-
ables can be non-zero.

We address two internal states in each round as follows: #1 is the state before SubBytes in
round 1, #2 is the state after MixColumns in round 1, #3 is the state before SubBytes in round
2, . . ., #19 is the state before SubBytes in round 10, #20 is the state after ShiftRows in round
10 (MixColumns is omitted in the last round).

The key K is expanded to a sequence of keys K0,K1,K2, . . . ,K10, which form a 4 × 60 byte
array. Then the 128-bit subkeys $0, $1, $2, . . . , $14 come out of the sliding window with a 4-column
step. The keys in the expanded key are formed as follows. First, K0 = K. Then, column 0 of
Kr is the column 0 of Kr−1 xored with the nonlinear function (SK) of the last column of Kr−1.
Subsequently, column i of Kr is the xor of column i− 1 of Kr and of column i of Kr−1.

2.2 Overall procedure

For AES-128, we divide the entire space of 2128 keys into 2124 non-overlapping groups of 24 keys
each. We start modifications in the first rounds of AES-128, as opposed to the attacks of [2],
where the modifications are done in the last rounds.

In each key group, we fix a base key and enumerate all the other keys in the key group
with respect to it. The enumeration is performed in a way that allows to efficiently compute the
intermediate states corresponding to the keys tested in a key group. To attain that, we modify
the base key at two byte positions independently (in 22 ways each) and follow the propagation of
those modifications forwards and backwards.

Now, starting with those intermediate states, a meet-in-the-middle key recovery with partial
matching (in several state bytes) and splice-and-cut technique (going over the encryption oracle
from the generated plaintexts to the corresponding ciphertexts) is applied. For each combination
of plaintexts and intermediate states, corresponding to some keys, it is tested if there is a match.
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2.3 Key space partitioning

The AES-128 key is entirely defined by the first subkey $0 which coincides with the master key.
We enumerate the groups of first subkeys by 2124 base keys. The base keys are all possible 2124

16-byte values with two bytes that have zeros in two bits each:

,
where x = (x0x1x2x3x4x500)2 and y = (y0y1y2y3y4y500)2 with two lest significant bits set to
zero. Within each group of keys, these bit values in the base key are also fixed, delivering a fixed
known 16-byte base key for each group.

The 24 keys in a group are enumerated by all possible byte differences a = (000000a1a0)2 and
b = (000000b1b0)2 with respect to the base key of this group:

with bits a1, a0, b1 and b0 running over all possible values.
This yields the full coverage of the first subkey space by the 2124 non-intersecting groups of

24 keys each, thus, providing the full coverage of the AES-128 key space.

2.4 Key testing

At this point, we assume that a base key is fixed, which defines a group of 24 keys. We apply a
meet-in-the-middle technique with matching on several bytes of ciphertext. In the group of keys,
the accommodated cost of the computation of those matching bytes from above and below for
one key is significantly less than one AES-128 run. This is the major source of the complexity
reduction.

In each key group, we modify the keys in the key search by a- and b-differences. The modi-
fications are such that over all key groups in total there are only 16 plaintext-ciphertext pairs.
The key modifications define plaintexts Pa,b. The corresponding ciphertexts are derived from Pa,b

using the encryption oracle.
The key recovery procedure is two-step. First, we generate intermediate states Sa,b at #5

efficiently. Second, starting with Sa,b, we compute several bytes of ciphertext and check for a
match with the ciphertexts obtained from Pa,b.

The first step of generating Sa,b is illustrated in Figure 1 and can be outlined as follows:

1. Encrypt the all-zero plaintext with the base key (base computation in Figure 1) and store the
state S0 at #5 and $2.

2. For each a, inject the a difference (a-modification in Figure 1) in the first subkey (two
bytes). Compute and store Sa at #5 and $2. for each a. Only the bytes depending on the
a-modification have to be computed for that, see the figure.

3. For each b, inject the b difference (b-modification in Figure 1) in the first subkey (two bytes).
Compute and store Sb at #5 and $2 for each b. Only the bytes depending on the b-modification
have to be computed for that, see the figure.

4. Now inject each combination of differences a and b, 24 times altogether (the a- and b-
modification in Figure 1) — for each key in the key group. Each combination gives one
plaintext Pa,b and one state value Sa,b at #5 and $2. The plaintext Pa,b and the intermediate
state Sa,b of the a-and b-modification are influenced both by a and b. Pa,b can be obtained by
direct combination of the zero plaintext in the base computation and plaintexts Pa and Pb

in the a- and b-computations. In order to compute Sa,b, one combines the relevant parts of
S0, Sa and Sb. Note that the upper right byte of Sa,b depends on both Sa and Sb. It can be
computed by just xoring the corresponding bytes of Sa and Sb.
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Thus, having computed Sa and Sb separately for a and b, one efficiently derives Sa,b, given
the structure of the AES.

Fig. 1. Step 1: Savings of computations in the first three rounds

The second step is matching Sa,b with the ciphertext which requires recomputations of some
S-boxes of the cipher for every key. The procedure is as follows and is illustrated in Figure 2:

1. In SubBytes of round 3, right after #5, we need to recompute only one S-box for each key.
The computation of the MixColumns operation will depend on both key modifications.

2. In SubBytes and MixColumns of rounds 4–7, all bytes need to be recomputed.
3. In SubBytes of round 8, all S-boxes are recomputed. In MixColumns of round 8, we only need

to recompute 4 bytes.
4. In SubBytes and MixColumns of round 9 as well as in SubBytes of round 10, we 4 bytes are

recomputed.
5. We match the recomputed 4 bytes of #21 with the ciphertext obtained using the encryption

oracle from Pa,b.
6. Test each of the surviving keys using at most one additional plaintext-ciphertext pair.

Fig. 2. Step 2: Recomputation at matching
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2.5 Complexities

Within each of 2124 groups, the 22 a-only and 22 b-only propagations are computed for a part of the
cipher. The states Sa,b can be combined directly from Sa and Sb. The computational complexity to
precompute all Sa and Sb in each key group is at most 0.3 AES-128 runs (the first step). Once Sa,b

and the ciphertexts are given, the computational complexity is mostly determined by the parts of
states one has to recompute for each combination of a- and b-propagations to enable matching.
This requires about 7.12 AES-128 runs to test all 16 keys in the key group (the second step).
Handling false positives has a relatively negligible computational complexity, since it happens
once among 232 keys tested on average. This delivers a computational complexity of

2124(0.3 + 7.12) = 2126.89 AES executions.

As to the data complexity, varying 2 bits in a and 2 bits in b modifications propagate to
a maximum of 4 bits changed in total in the plaintext. The change is with respect to the zero
base plaintext (chosen plaintexts of the base computation). This yields data complexity of only
16 chosen plaintexts (this is to be compared with 288 chosen ciphertexts needed in the biclique
cryptanalysis of AES-128 in [2]).

Since the coverage of the key space by groups around base keys is complete, we cannot miss
the right key and the success probability is 1.

The memory requirement is the storage of 22 a-only and 22 b-only propagation values, which
is negligible, since one has to store only relevant parts.

3 Implementation

The biclique attack on AES-128 has been adapted for hardware implementation as outlined in
the previous sections and realized on the RIVYERA [13] computing cluster. The RIVYERA
computing-architecture consists of 128 Xilinx Spartan3 XC3S500 high performance FPGAs with
an equivalent computing power of 640 million system gates and is ideal for parallel computing
applications, including cryptanalysis. In addition, the low energy-consumption and the improved
bus-system makes RIVYERA a perfect choice for setting up high-density and large-scale FPGA
clusters where supercomputer performance is required. On the other hand, our design is also
synthesized in ASIC technology to compare the advantage factor with the gain that FPGA im-
plementation provides.

For a realistic and fair quantification of the performance improvement obtained by the biclique
attack, first, an optimized brute-force attack on AES-128 was realized. In the implementation of
both attacks, highest possible performance on the RIVYERA and ASIC platforms has been
targeted, and for this purpose, several different implementations have been evaluated.

During the evaluation phase, we observed that the performance bottleneck, both in terms of
speed and area, is caused by the S-boxes. Therefore, most of the design effort was concentrated on
high-speed and low-slice count realization of S-boxes. While implementations involving utilization
of dual-port RAMs as lookup table based S-boxes resulted in the best slice numbers, they also
suffered from poor speed performance, mainly due to the high routing delays between S-boxes
and the other functional blocks implemented on slices. On the other hand, fully combinational
implementation of lookup tables for S-boxes resulted in the worst performance both in terms of
speed and area. The best choice left was to implement the S-boxes using composite field invert-
ers [4]. Again, various composite fields were evaluated and the best speed and area performance
was obtained via the GF (((22)2)2) composite field in [12]. Furthermore, aggressive pipelining was
applied to both the S-boxes as well as the other computation units within the rounds for higher
speed-up and as a consequence fully unfolded pipelined designs were realized for both the näıve
and biclique attacks.
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In the following subsections, implementation details of both designs will be given together
with the performance figures and comparisons, as well as the architectural details.

3.1 Reference point: Optimized brute-force attack on AES-128

In the implementation of the optimized brute-force attack on AES-128, our target was to achieve
the highest possible performance on the RIVYERA platform in order to have a fair comparison.
We achieved our target by evaluating several different implementations with different stages of
pipeline.

For recovering the secret key of a given plaintext-ciphertext pair by brute-force attack, all
possible key combinations should be tested. Considering AES-128, this corresponds to 2128 tests.
In our implementation, we were able to fit two optimized brute-force attack cores on each of
the 128 FPGAs on the RIVYERA engine. The most-significant 7-bits of the 128-bit key is used
as the FPGA identifier, and are therefore fixed for each FPGA. The following 1-bit is used as
the core identified. The rest 120 bits were generated by a pipelined, high-speed 120-bit counter,
independently for each core.

Figure 3 shows the explained input key scheme together with one of the two AES cores.
Each of the these näıve cores consists of 10 unrolled and fully pipelined AES rounds, where the
known plaintext is also taken as an input and the corresponding ciphertext is compared with the
output ciphertext. The output matching is also done in a pipelined manner: In the first stage of
the pipeline, comparison on each byte is done separately resulting in 16 independent bytewise
comparison results. In the next stage, the 16-bit result vector is checked to see if it is all 1’s.
The pipelined key counter and comparison stages are built to ensure the same target frequency
is achieved within the rounds.

In the following subsections, the proposed architecture with the details of pipeline stages and
the implementation aspects for FPGA and ASIC is presented.

The proposed architecture The highest speed implementation of the AES algorithm can be
achieved via a fully unrolled and pipelined design [4]. Sharing the datapath for different rounds
not only results in additional multiplexer delays, but it also renders the pipeline within rounds
impossible. However, pipelining rounds is not sufficient. It should also be applied within each
round to achieve the highest possible throughput. The improved brute-force attack is implemented
as 10 unrolled full rounds (Figure 4), where an 11-stage pipeline is implemented within each round.
To get the best speed/area performance, we implemented different number of pipeline stages to
the S-boxes, MixColumns modules and in between the rounds. With less number of pipeline
stages, we were able to fit up to 4 cores in one FPGA. However, in that case the maximum
operating frequency dropped by more than a factor of 2, resulting in a worse average throughput
per FPGA. Therefore, we opted for 2 core per FPGA and targeted to achieve the highest possible
frequency by utilizing the unused slices as additional pipeline stage. We have tried several different
pipeline configurations, as well as asymmetric pipeline construction. In the end, we opted for an
11-stage pipeline identical in every round, which gave the optimum performance result, and used
it in each round.

As already stated in previous sections; one round of AES is composed of four steps, which
are repeated in 10 rounds for 128-bit key and these steps are SubBytes (S-box), ShiftRows,
MixColumns and AddKey. ShiftRows step is only an interconnection with no logic cost and
AddKey step is XORing the data and the subkey. In MixColumns step, the elements of data
in each column are permuted using a chain of XOR operations. The most expensive step is the
S-box phase, as mentioned before. It is the slowest operation of AES. In S-box step, the input
is considered as an element of GF (28). First, its multiplicative inverse is calculated and then
an affine transformation over GF (2) is applied. The S-box can be implemented using finite field
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operations. However, the calculation of the inverse of elements is expensive. An algorithm can
be used to calculate the multiplicative inversion in GF (28) using the GF (((22)2)2) composite
field operations [12]. Although the composite field implementation is area-efficient, it has a very
long critical path. This long critical path is the main bottleneck in terms of overal speed and
throughput. It is the main reason why we ended up with so many (11) stages of pipeline for each
round. 8 of these stages are solely used within the S-Box.

Since pipelining the S-box directly affects the number of registers, it has to be done cautiously.
Otherwise, increase in the area can be much more than expected if the pipeline registers are not
placed properly. In our design, the critical path with the S-Box is broken in 8 stages, where 6 of
those stages lie inside the inverter. Figure 5 shows the pipelined architecture of S-box phase and
its components.

In addition to the pipelined stages inside S-box, there are 3 more pipeline stages between oper-
ational steps: One after the SubBytes operation, one after the MixColumns operation and finally
one after the KeyAdd operation. Note that, pipeline registers are also added to key scheduling to
be synchronized with the state processing. Therefore, in total, optimum pipelined implementation
has 11 pipeline stages for each round of AES. Figure 6 shows the pipelined architecture of one
AES round.

Implementation on FPGA Our proposed design is first implemented on RIVYERA, where
128 Xilinx Spartan3 XC3S500 FPGAs are used. The Synplicity tool is used for the synthesis of
the design, which gives superior results with respect to native Xilinx ISE synthesizer, especially
in register based design. For the place and route phase, the Xilinx ISE tool 12.3 is used, with
the “continue on impossible” option on for the routing. The performance results of our proposed
architecture on FPGA is shown in Table 1.

Table 1. FPGA implementation results for näıve attack FPGA (2 cores/FPGA)

Slice Utilization % FPGA Utilization Maximum Frequency (MHz) Keys tested/sec/FPGA

26949 / 33278 80.98 263.16 MHz 526 × 106

Implementation on ASIC The proposed design is also realized on ASIC. The register based
structure of our design, which uses no FPGA specific features, allowed us to directly use the
existing RTL code for ASIC implementation. Therefore, we were able to use same design for both
implementations. In the implementation process, Cadence Encounter RTL Compiler v10.1 for
synthesis. The implementation has been synthesized with 45 nm generic NANGATE standard
cell library. In the synthesis, typical operating conditions were assumed. The performance results
of our proposed architecture on ASIC is shown in Table 2.

Table 2. ASIC synthesis results for näıve attack core

Core Area (GE) Maximum Frequency (MHz) Average Power (mW) Keys tested/mW

362181 2480 622.937 3.98 × 106

3.2 Biclique Attack

We have realized two hardware architectures for the biclique attack. The first one is a conceptual
architecture that maps the theoretical attack directly to hardware. It is a storage based archi-
tecture, and heavily relies on precomputation and storage of biclique states within the memory.
However, practical limitations associated with memory usage makes this architecture practically
inefficient. Therefore we have only used it to model our actual architecture, which depends on
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on-the-fly computation of biclique states. We name it as the “recomputation” or “virtual stor-
age” architecture. In addition to its lower memory requirements, it is also suited better for a
pipelined implementation, making it possible to re-use the modules implemented for the näıve
attack. In the following subsections, the details of each architecture will be outlined together with
implementation results.

Conceptual Attack Architecture Using Storage Figure 7 shows the storage based archi-
tecture. It is based on precomputation of all base states as well as delta and nabla differences for
each biclique trail, and storing them inside the memory. Then for each biclique state byte, the
corresponding base and delta and/or nabla state bytes are read from the memory, and summed.
The operation of this architecture can be summarized as follows:

• For a new key group, the precomputation engine computes all the base and biclique difference
states and stores them in the memory. Practically, the precomputation engine is composed of
a single S-Box, a single (or even a partial) MixColumns module and as many bytes of memory
required for the target data complexity.

• While the precomputation for the new key group is in progress, the precomputed values for
the previous key group are used by the biclique brute-force attack engine to attack that key
group. The engine reads the precomputed base state and biclique difference state values stored
inside the memory and sums them to form the biclique trails.

In theory, this seems to be the most resource efficient approach. It requires only a single S-Box
and RAM based memories. However, there are several practical obstacles to make this approach
infeasible for hardware implementation, especially on FPGA:

• The case for the single S-Box is only valid for relatively high data complexities, i.e. the single
S-Box should have clock cycles sufficient to compute all target base and biclique state bytes
until the key group changes. The key group change occurs in every 22d cycles. This means
the total number of base and biclique bytes on the biclique trails should be less than 22d. For
example, for the trails we have chosen, the first three rounds are on the biclique part of the
attack. This means 48 base state bytes. There are 7 bytes on the delta trail and 6 bytes on
the nabla trail. The sum of these two has to be multiplied by 2d, resulting in 13× 2d biclique
states. On top of this, S-Box precomputation numbers for key expansion has to be added as
well. This is another 8 base states and 2 × 2d biclique states (2d for delta and 2d for nabla,
respectively). As a result, a total number of 56 + 15×2d S-Box precomputations are required,
and it should be completed within 22d cycles, i.e. 56 + 15× 2d ≤ 22d. This means, d should at
least be equal to 4, which corresponds to 256 plaintext-ciphertext pairs. Furthermore, there
is a “black” byte on round-3, which corresponds to a non-linear combination of the delta and
nabla trails and requires its own S-Box. The whole cycle computation gets even worse, when
a pipelined S-Box is used.

• Memory access will be a major problem. Each of the base, delta and nabla difference states
have to have their seperate memories to allow parallel reads. The memories should be dual-
port memories or registers, since the precomputation engine will need values of precomputed
bytes of the preceeding round in order to precompute bytes of a target round. Furthermore,
a “ping-pong memory” scheme is required: The currently computed states are stored to the
“ping” memory, while the precomputed states are read from the “pong” memory. There will
be a lot of independent memory module which are operated in parallel and has to be accessed
in parallel. This poses a practical interconnection delay problem due to fixed topologies of
RAMs on the FPGA. It even applies to ASICs, where the physical size of the RAMs are a
function of the size of the memory. For very small memories (for example 256 byte memories,
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which will be needed in the case of d = 4), the decoding logic of the memory becomes the
determining factor for the physical size of the memory module.

Of course, it is possible to overcome these obstacles, at least partially. A larger d can be
selected (for example, d = 5). This will leave enough cycles for all the state computations, even
considering the internal pipeline of the S-Box. It will also make the memory sizes (also physically)
feasible for implementation, at least on ASIC. Chosen biclique trails can be modified to ones which
require lower number of plaintext-ciphertext pairs, i.e. 2d instead of 22d, in which case only 32
pairs will be sufficient for d = 5. It is also possible to make this architecture reconfigurable by a
simple controller that determines the source and target of the S-Box. It will then be much simpler
to change the biclique trails.

However, the interconnection delay problem on the distantly located FPGA memories will
persist in any of the cases above. One solution would be to replace RAM based memories with
registers. While solving most of the memory size related problems, this will also mean use of
several of the FPGA resources (slices) for storage only. In our case, this is undesirable, since our
main target is to fit as many of biclique attack engines on one FPGA as possible in order to
achieve a high advantage factor.

Considering all these factors, we opted not to implement this architecture, and search for
alternative approaches instead.

Actual Attack Architecture Using Recomputation (Virtual Storage) Our recomputa-
tion model is based on the idea of computing the base and biclique difference state bytes on-the-fly
instead of precomputation. This approach not only allows us to prevent RAM usage, but it also
allows us to seamlessly integrate the biclique parts of the attack into the rest of the architecture. In
this approach, the base states are computed using serialized AES rounds, where biclique-specific
S-Boxes are operated in parallel with the serialized round in order to compute the biclique differ-
ence states for delta and nabla trails. The computed base state bytes are serially sent to the next
round without any additional temporary storage, while the biclique states are partially stored.
Therefore, this approach is not completely storage-free. However, the partial storage is embed-
ded into the serial pipeline running parallel with the serialized flow of base states. In this sense,
it can be considered as a virtual storage. This structure also minimizes the interconnection by
reducing the whole data flow effectively to two byte-serial shift-registers running in parallel (and
a third one for the key expansion). A single large double buffer (for serial-to-parallel conversion)
is required only at the crossing from biclique processing to regular parallel rounds. However, it
practically is the first pipeline stage of the first regular round, therefore its effective cost is zero.

We start with the detailed description of the recomputation architecture with its overall
schematic shown in Figure 8. The arhitecture consists of three main parts:

• Biclique rounds in the beginning: The first three rounds realize the biclique part of the at-
tack. Each of these rounds are individually designed to implement the biclique trails given in
Section 2.4 using the “recomputation” model which will be explained below.

• Regular rounds in the middle: Rounds four to seven of AES-128 are regular pipelined rounds
similar to the ones used in the näıve attack. However, due to the limited resources left on
the FPGA after fitting four biclique attack engines, we had to implement a 7-stage pipeline
instead of 11. This resulted in an 8% drop in the maximum frequency.

• Reduced rounds in the end: Rounds eight to ten are reduced versions of the 7-stage pipelined
regular rounds. Reduction comes from partial matching at the output. Instead of the full
16-byte output, only 4-bytes are used for ciphertext matching. These bytes are chosen in a
way to ensure minimal S-Box usage as shown in Figure 1. Partial matching results in a 2%
reduction in slice usage per core. It also gives an extremely low probability (1 in every 232)
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of false alarm rate. Each false alarm key is sent to the main processor on the RIVYERA
engine for offline verification. With such a low probability, this scheme requires virtually zero
communication bandwidth between each FPGA and the main processor.

As a first step of the realization of the biclique rounds, we carefully selected the data complex-
ity d. As explained before, there are 22d cycles between two consecutive key groups. Therefore,
computation of a full set of states (both base and biclique) must be completed within this period.
On the other hand, full AES state is composed of 16-bytes. Since we are trying to keep the S-Box
cost as low as possible to be congruent with the original attack scenario, we started with the
assumption of using a single S-Box for the computation of base states within one round. This
simply corresponds to d = 2 with full utilization of all 16 cycles between two key groups for the
computation of all state bytes within a single AES round. This can be easily achieved via a byte-
serial AES implementation similar to [3], which is also the most compact AES implementation
reported so far.

Selection of a higher d will result in more biclique states to be recomputed, and a more
complex interconnection network. Lowering d to the minimum value of 1 will require double the
number of S-Boxes for the base state computations. Selection of d = 2 will require a total number
of 16 plaintext-ciphertext pairs, which is also easily implementable, especially considering that
only 4-bytes of the 16 possible ciphertexts have to be stored. It can efficiently be implemented as
a lookup table on the FPGA slices.

After the selection of d = 2, we designed each of the rounds in a custom manner as explained
below:

• Round-1: This round is a modified version of the serial AES structure given in [3]. Of course,
the serial AES structure is unrolled to form only a single AES round within the overall pipeline.
Since the S-Box is the first element with the serial data flow, it can also be implemented with
internal pipeline without distorting the overall data flow. Its only effect will be additional
initial pipeline delay. However, the main difference is the byte order. In the original serial
design (as with most other reported serial implementations), data processing begins with the
most significant (leftmost) byte and proceeds towards the least significant (rightmost) byte.
In our case, we start with the rightmost byte. This is done basically to be compatible with
the key generator, which is a byte-serial up-counter. It also starts with the least significant
byte, which is incremented by adding 1 on to the current value. The carry from that addition
goes to the next byte as the addition value, and so on, until the core ID and FPGA ID bits,
which are fixed and selected via multiplexers. Therefore the first byte going into the serial
AES Round-1 is the least significant byte. There is no additional cost of processing state bytes
in reverse, except for the change in the order of operations in MixColums block. There are
no biclique trails, hence no biclique state processing, in this round. The Round-1 module is
shown in Figure 9.

• Round-2: This round is very similar to Round-1, except, in this round there is additional
logic for biclique state processing. In parallel with the serial AES round identical to Round-1,
a second S-Box is operated in 6 of the 16 cycles of each key group. These 6 cycles are equally
shared between the delta and nabla traces, for each of which there exists 3 non-zero difference
values. As shown in Figure 10, two temporary byte sized registers hold the values of incoming
base state bytes 6 and 0. As with the incoming base state values, the output of the base state
S-Box for bytes 6 and 0 are also stored in two other temporary registers. To the state byte
6 (which comes first due to reverse order byte processing), non-zero biclique value of 0x01,
0x02 and 0x03 are added in order and sent to the additional biclique S-Box. The outputs of
this S-Box for three biclique values are added to the output of the base S-Box for byte 6 in
order to get the nabla difference, which is serially pushed into a FIFO register of depth-6 and
width-8 (i.e. 1 byte). The same is repeated for the delta differences, but this time using the
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base state byte 0. When all 6 byte delta and nabla values are ready, they are kept inside the
FIFO until base state processing of all 16 bytes in the serial AES round are complete. Each
of the delta and nabla byte triplets are then padded with a zero byte (that corresponds to the
0x00 biclique difference and parallely loaded into two rotating registers, whose outputs are
added onto the base state output in order to provide the biclique state inputs for Round-3.
The key processing of this round is identical to that of Round-2, since the only biclique key
byte operations are direct addition of four possible biclique differences, which is incorporated
into Round-3 key expansion for convenience.

• Round-3: The last biclique round is also based on serial processing of state bytes, but it is
largely different from the other two rounds. Instead of a single serial path for base state bytes
and a partial serial path for biclique difference states, there are four serial paths operating
in parallel. Instead of computing base and biclique difference states seperately, the four serial
paths calculate the final states of the third round directly. In this round, there are four base
state bytes (5,7,9,11), six delta biclique state bytes (0,1,2,3,4,8), five nabla biclique state bytes
(6,10,13,14,15) and one combined biclique state byte. Each of the delta and nabla state bytes
requires 2d = 4 S-Box computations (including the zero biclique value of 0x00). The combined
state byte requires 22d = 16 S-Box computations, and each of the base state bytes requires
a single S-Box computation. This adds up to a total of 11 × 4 + 1 × 16 + 4 × 1 = 64 S-Box
computations that have to be completed within 16 cycles. Hence with a perfect timing, exactly
4 S-Boxes on 4 serial paths are sufficient. Since in this round, our aim to calculate the final
states (i.e. after S-Box operation) directly, we have to also consider the directly added non-
zero biclique values that should ideally come from the key expansion of Round-2. However,
we incorporate it into this round by directly adding the target value on the input byte of
the round. In this scheme, each input byte is either passed as is (in case of a base byte),
summed with the delta/nabla non-zero biclique value, summed with the delta/nabla S-Box
output difference value calculated in Round-2, or a combination of both. In case of the single
combined state byte, value added onto the input byte 12 is not “either delta or nabla”, but
instead “both delta and nabla”, therefore resulting in 16 disctinct values at the S-Box output.
The only costs associated with this scheme are two 2-bit counters for direct biclique values
and multiplexers at the adder (XOR) input to choose a combination of the biclique inputs.
As shown in Figure 11, although the work load of each serial path is exactly 16 S-Box com-
putations per key group, distribution of the output bytes per path varies: Path-0 serves bytes
15, 11, 9, 7, 5, 4, 2; path-1 serves bytes 14, 10, 6, 1; path-2 serves bytes 13, 8, 3, 0; and
path-3 serves only byte-12 (combined biclique state byte). The outputs for each byte are then
directed to FIFOs of 4-byte depth (if delta or nabla bicliques), or a FIFO of 16-byte depth (if
combined biclique), or a single byte register (if base); in a similar way as done in Round-2. The
next and final stage is a combination of rotational registers (of corresponding sizes), which
are parallelly loaded from FIFOs at the beginning of each key group, and then rotated every
4 cycles (if delta biclique), or every cycle (if nabla or combined biclique) in order to form the
216 possible input combinations at the MixColumns module (which is a parallel implementa-
tion). Key expansion module is a combination of the regular key expansion unit (also used in
Round-1 and Round-2) and a register bank. Since the base states in the key expansion require
only 4 S-Box computations, the required 3 + 3 = 6 biclique S-Box computations can also be
done using the same S-Box within the allowed 16 cycles, with careful timing.

Implementation on FPGA We have optimized our design in a way to fit four biclique engines
(each with its own key generation and output matching circuitry) on each of the 128 Xilinx Spar-
tan3 XC3S500 FPGAs on RIVYERA. As in the näıve attack implementation, we used Synplicity
for synthesis. Also, the place and route was done using Xilinx ISE 12.3, again with the “continue
on impossible” option on for the routing. Our major problem was the extemely tight utilization
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of resources. Due to the slices required for RIVYERA configuration, the upper limit of the FPGA
area that we were allowed to use was practically 92%. Initially, slice utilization was more than
96%. We had to hand-tailor parts of the design, especially simple looking control logic sections
(mostly redundant registers for temporary storage due to poorly trimmed timing controls). Only
after than, we were able to fit into 92% of each FPGA. Without the “continue on impossible”
option, maximum reachable frequency was around 207 MHz. After enabling that option, the oper-
ating frequency increased to 236 MHz, drastically. We did not use any of the block RAMs on the
FPGA, due to the register based pipelined structure of our design. Table 3 lists the performance
results of our proposed architecture on FPGA.

Table 3. FPGA implementation results for biclique attack FPGA (4 cores/FPGA)

Slice Utilization % FPGA Utilization Maximum Frequency (MHz) Keys tested/sec/FPGA

30720 / 33278 92.31 236.22 MHz 945 × 106

Implementation on ASIC As in the näıve attack case, we also synthesized the biclique attack
architecture on ASIC using the NANGATE generic 45 nm standard cell library. As stated before,
the register based structure of our design allowed us to directly use the existing RTL code.
Again, Cadence Encounter RTL Compiler v10.1 was used for synthesis with typical operating
conditions were assumed. Surprisingly, the advantage factor obtained for both FPGA and ASIC
were different by 20% (1.8 in FPGA, 1.45 in ASIC) when time-area product was considered. In case
of using power as the target advantage factor (keys tested per mW) for ASIC implementation, the
advantage factor was again 1.8. Performance results of our proposed biclique attack architecture
on ASIC are shown in Table 4.

Table 4. ASIC synthesis results for biclique attack core

Core Area (GE) Maximum Frequency (MHz) Average Power (mW) Keys tested/mW

163912 1548 211.545 7.32 × 106

4 Conclusion

We have presented optimized hardware architectures for (1) brute-force key-search of AES, and
(2) biclique key-search for AES using a tailor-made attack with practical data complexity. Despite
the biclique technique being structurally more complicated, we can report almost a factor 2 speed
and cost gain. For this conclusion we studied both FPGA and ASIC-based approaches.

For all combinations of approaches, the S-box implementations are in fact the bottlenecks.
Hence, future improvements for AES circuits targeting this bottleneck will likely affect all our
implementations in the same way. This further strengthens our conclusion that real-world cost
saving for AES key search can indeed be achieved using bilcique cryptanalysis, regardless of the
used technology.
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A Block Diagrams

Fig. 3. General architecture of the proposed AES core with key generator scheme
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Fig. 4. AES core block diagram
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Fig. 5. Pipelined S-box and its components
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Fig. 6. One pipelined AES round

Fig. 7. Conceptual biclique attack architecture
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Fig. 8. Recomputation based biclique attack architecture

Fig. 9. Biclique attack engine Round-1

Fig. 10. Biclique attack engine Round-2
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Fig. 11. Biclique attack engine Round-3
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Abstract. Recent advances in the graphics processing unit (GPU) hard-
ware challenge the way we look at secure password storage. GPUs have
proven to be suitable for cryptographic operations and provide a signifi-
cant speedup in performance compared to traditional central processing
units (CPUs). This research presents a proof of concept for the impact of
launching an exhaustive search attack on the MD5-crypt password hash-
ing scheme using modern GPUs. We show that it is possible to achieve
a performance of 880 000 password hashes per second, using various op-
timization techniques. For our implementation, executed on a standard
GPU, we obtain a speed-up of a factor of 30 when compared with equally
priced CPU hardware. With this performance increase, ‘complex’ pass-
words with a length of 8 characters are now becoming feasible to crack
even with inexpensive hardware.

Keywords: GPU, MD5-crypt, password hashing schemes, password crack-
ing

1 Introduction

Since the 90’s graphics processing units (GPUs) have been significantly im-
proved. They have proven to be very suitable for processing parallel tasks and
calculating floating point operations. While the advantages of GPUs in other ar-
eas (like graphical design and game-industry) have already been recognized, the
cryptographic community was not able to use them due to the lack of support for
integer arithmetic instructions and the lack of user-friendly programming APIs.
However, GPU producers have dealt with those shortcomings and it is especially
the parallel design of a GPU that makes it suitable for some cryptographic ap-
plications.

Many software services provide an authentication system that relies on a
user name and password combination. To make sure that these passwords are
still safe, even if the security of the password storage cannot be guaranteed,
it is common to use a cryptographic hash function to calculate the digest of
the password and store this together with the users credentials. Due to the
cryptographic properties of the hash function, the digest of the password is
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not easily reversible. Therefore the probability that an adversary learns partial
information about the password should be proportional to the work he invests
and the predictability of the password distribution. However, it is the latter
property that fails for human generated passwords and therefore an adversary
can mount an exhaustive search attack on the domain of the authentication
mechanism. Password hashing schemes have been designed to disable such an
attack, by increasing the complexity of the calculations with techniques like
key-stretching [1,2]. In addition, schemes like Password-Based Key Derivation
Function (PBKDF2) [3] have been proposed to derive a cryptographic key from
low entropy passwords, e.g. by going beyond simple hashing. However, with the
introduction of cryptography on new hardware platforms, such as FPGAs [4]
and GPUs, it is doubtful if these schemes still provide enough security.

1.1 Related work

Thompson et al. [5] showed that GPUs could be used for general purpose com-
puting, in addition to specific graphics applications. Not long after, Cook et al. [6]
experimented with the applications of GPUs for cryptography. However, due to
the lack of integer arithmetic and support of API’s, no remarkable speedup was
gained. When general programming API’s for GPUs became available, Good-
man et al. [7] were first to realize that contemporary GPUs can outperform high-
performance CPUs on symmetric cryptographic computations, yielding speedups
of at most 60 times for the DES symmetric key algorithm. Several GPU imple-
mentations of the AES algorithm followed [8,9,10,11]. In addition, cryptographic
hash functions, such as MD5 [12,13] and Blowfish [14], and password hashing
schemes, such as DES-crypt [15], have been implemented on graphic cards too,
yielding substantial speed ups over CPUs.

The suitability of GPUs for asymmetric cryptography was first investigated
by Szerwinski et al. [16] and Harrison et al. [17]. In particular, GPUs for the
cryptanalysis of asymmetric cryptosystems was thoroughly investigated by Bern-
stein et al. [18]. They showed that it is possible to reach up to 481 million modular
multiplications per second on a Nvidia GTX 295, in order to break the Certicom
elliptic curve cryptosystem (ECC) challenge [19,20].

1.2 Contribution

This research investigates the impact of launching an exhaustive search attack
on authentication mechanisms that use password hashing schemes based on
a cryptographic hash function (such as MD5). We focus on efficient imple-
mentations of these password schemes on GPUs in order to initiate massive
parallel execution paths at low cost compared to a typical CPU. In particular,
we review the MD5-crypt password hashing scheme. MD5-crypt is used as the
standard password hashing scheme in most Unix variants, such as BSD and
Linux. Moreover, corporations like Cisco have it employed in their routers and
the RIPE Network Coordination Centre stores the MD5-crypt hashes, used to
authenticate their users, in public. If the security of MD5-crypt fails, it will
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have a large impact on the confidentiality and integrity of systems and services.
Since the security properties and design of this scheme have been the basis for
other hashing schemes, e.g. SHA-crypt [21] and the PBKDF2 framework, our
findings suggest that the security of similar schemes should be revisited.

The remainder of this paper is organized as follows. Section 2 describes the
GPU architecture and its execution model. Section 3 elaborates on the possibil-
ities for efficient implementations of the MD5-crypt password hashing scheme
on a modern GPU. We describe some of our GPU optimization strategies in
Section 4. Section 5 contains our experimental evaluation on which we base our
conclusions (Section 6).

2 GPU hardware layout

There are multiple GPU manufactures, each using different chip sets and archi-
tectures. However, all GPU devices are based on the Single Instruction Multiple
Thread (SIMT) architecture, which we describe in the following section. Our re-
search focuses on Nvidia GPUs and their Compute Unified Device Architecture
(CUDA) execution model [22,23].

2.1 The SIMT architecture

The SIMT architecture describes a multiprocessor (a common GPU has several
multiprocessors, each consisting of multiple thread processors) that can create,
manage, schedule and execute threads in groups. A group of N parallel threads is
called a warp. Every thread has its own instruction address counter and register
state. Individual threads in the same warp start together at the same program
address, but can execute and branch independently.

A warp executes one common instruction at a time, so full efficiency is re-
alized when all N threads of a warp agree on their execution path. If a thread
in a warp diverges via a data-dependent conditional branch, the warp serially
executes each branch path taken, disabling threads that are not on that path.
When all paths are completed, the threads converge back to the original exe-
cution path. Branch divergence occurs only within a warp. Different warps on
different multiprocessors execute independently regardless of whether they are
executing common or disjoint code paths.

To maximize utilization, a GPU relies thus on thread-level parallelism. Uti-
lization is therefore directly linked to the number of warps residing on a multi-
processor. At every instruction issue time, a warp scheduler selects a warp that
is ready to execute its next instruction and issues the instruction to the active
threads of the warp. The number of clock cycles it takes for a warp to be ready
to execute its next instruction is called latency (which actually depends on the
number of clock cycles it takes to issue a memory request). Full utilization is
then achieved when the warp scheduler always has an instruction to issue for
some warp at every clock cycle during that latency period. This is called latency
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hiding. The number of instructions required to hide a latency of L clock cycles
depends on the throughput of these instructions. For example, if we assume that
a multiprocessor issues one instruction per warp over 4 clock cycles and maxi-
mum throughput for all instructions is achieved, then the number of instructions
to hide the latency should be L/4.

The SIMT architecture is related to Single Instruction Multiple Data (SIMD)
vector organizations in the sense that a single instruction controls multiple pro-
cessing elements. The major difference between the SIMD and SIMT architec-
tures is the fact that SIMD vector organizations expose the width (and thus
the number of threads that can run concurrently on one processor) to the soft-
ware. SIMT instructions on the other hand specify the execution and branching
behavior of a single thread. This enables programmers to write thread-level par-
allel code for independent threads as well as data-parallel code for coordinated
threads. Actually, the programmer can even ignore the SIMT behavior; however,
substantial performance improvements can be realized by taking care that the
code seldom requires threads in a warp to diverge.

2.2 The CUDA execution model

The mapping between the API and the hardware is an important aspect of the
CUDA architecture. A kernel is defined as a function that is executed by a
thread, which are identified by their unique thread id. Every thread processor
on the device executes the kernel via the SIMT principle. Multiple threads are
part of a thread block, which is executed by one multiprocessor. This multipro-
cessor contains multiple thread processors. Instructions are issued in warps and
all thread processors of one streaming multiprocessor are always issued the same
instruction. Several concurrent thread blocks can reside on one multiprocessor,
limited by multiprocessor resources such as shared memory and number of avail-
able registers. In addition, physical limits of the GPU hardware apply. For the
GPU platform used in this research, the maximum number of thread blocks and
the maximum number of threads that can reside on one multiprocessor are 8 and
1024 respectively. Threads within a thread block can cooperate and synchronize,
while this does not hold for threads in different blocks. Multiple thread blocks
make up a grid. Every grid contains a predefined number of thread blocks and
a kernel is launched on the device as a grid of thread blocks. An overview of the
CUDA execution model is shown in Figure 1.

The number of threads in a thread block and the number of thread blocks in
a grid can be determined at compile time or runtime. This allows programs to
transparently scale to different GPUs and hardware configurations. The hard-
ware is free to schedule thread blocks on any multiprocessor as long as it fits in
the warp size (which is 32 for the tested platform). When a multiprocessor is
given one or more thread blocks to execute, it partitions them into warps that
get scheduled by a warp scheduler for execution. The way a block is partitioned
into warps is always the same. Each warp contains threads of consecutive, in-
creasing thread id’s with the first warp containing thread 0. The configuration of
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Fig. 1. The CUDA execution model (after [23])

a kernel (in number of grids, thread blocks and threads) significantly influences
the execution speed. We will discuss optimal kernel configuration in Section 4.

In addition to the execution model, the memory layout is important for op-
timization strategies too. CUDA contains five different classes of physical mem-
ory. The properties of the types of memory that are relevant for our research are
shown in Table 1. Since local memory physically resides on the global memory,

Memory Location chip Cached Access Scope Lifetime

Register On n/a R/W 1 thread Thread
Local Off No R/W 1 thread Thread
Shared On n/a R/W 1 Block Block
Global Off No R/W All threads Host
Constant Off Yes R All threads Host
Texture Off Yes R All threads Host

Table 1. Features of Nvidia’s GPU device memory (after [22])

we can use the following types:
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– Global memory: Global memory physically resides in the device memory
(RAM) and therefore has a latency of 400 to 600 clock cycles per access.
While this latency is relatively high, it can be hidden by the warp scheduler
(although not completely).

– Registers: Every multiprocessor has a set of 32-bit registers that are shared
by all threads assigned to that multiprocessor. Basically, every access to a
register by the thread processor is immediate, which means that it takes
zero extra clock cycles per instruction. Delays may occur by read-after-write
dependencies and register bank conflicts.

– Shared Memory: Every multiprocessor has its own shared memory that is
shared by all threads assigned to that multiprocessor. Because shared mem-
ory resides on-chip, it is much faster than global memory. In fact, uncached
shared memory latency is roughly 100 times lower than global memory la-
tency. Shared memory is not initialized automatically and should therefore
be assigned before compile time. Because every thread in a block can ac-
cess the shared memory and the kernel configuration is not always known at
compile time, the programmer has to align the memory and make sure that
every thread accesses its own piece of shared memory.

3 Parallelization of MD5-crypt

MD5-crypt is a password hashing scheme that uses the MD5 cryptographic hash
function [24] to securely store a user’s password. The algorithm applies the MD5
function 1002 times, while concatenating the user’s password, a random salt
and the result of the previous round in a pseudo-random way (See Appendix
Figure 7 for a schematic overview of the algorithm and its pseudo-code). Since
the output of the last round serves as input for the next round, the algorithm
depletes the parallelization of the 1002 rounds. However, an exhaustive search
attack to find a matching password for a given hash can be parallelized easily. In
fact, exhaustive searches are embarrassingly parallel (as stated in [25]), since the
parallel processing units of the underlying hardware do not have to interact or
cooperate with each other. Every processing unit tries a set of possibilities and
compares them with a target. The only cooperation that is needed, is the division
of the search space and a general stop message that terminates the search when
one processing unit has found a match. If we map this approach to MD5-crypt,
every processing unit needs to calculate the MD5-crypt output hashes of all the
candidate passwords given in the input set and match them with a target hash.

To estimate the performance of MD5-crypt on a GPU architecture, we define
a simple theoretic model that is based on the number of arithmetic instructions
needed to complete one round of the password hashing scheme. Since it is not
very hard to estimate the instruction throughput of the GPU hardware plat-
form, this model can be used to compare the performance of the hashing scheme
on different architectures and determines the maximum speedup that can be
achieved. To define this model, only arithmetic and logic operations are taken
into account.
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To determine the number of arithmetic instructions needed to complete one
round of MD5-crypt, it is necessary to determine the number of instructions for
MD5 first. This hash function consists of 64 rounds (where 0 ≤ t < 64) in which
the following function is called [26]:

Qt+1 = Qt + ((Qt−3 + ft(Qt, Qt−1, Qt−2) +Wt +ACt)

<<< RCt) for 0 ≤ t < 64.

In the equation, ACt is an addition constant and RCt is a rotation constant.
The 512-bit input block is partitioned into sixteen consecutive 32-bit words
m0, . . . ,m15 and expanded to 64 words (Wt)63t=0 for each step using the follow-
ing relations:

Wt =





mt for 0 ≤ t < 16,

m(1+5t)mod16 for 16 ≤ t < 32,

m(5+3t)mod16 for 32 ≤ t < 48,

m(7t)mod16 for 48 ≤ t < 64.

Furthermore, ft is a non-linear function (depending on the round number t)
which is defined as:

ft =





F (X,Y, Z) = (X ∧ Y )⊕ (X ∧ Z) for 0 ≤ t < 16,

G(X,Y, Z) = (Z ∧X)⊕ (Z ∧ Y ) for 16 ≤ t < 32,

H(X,Y, Z) = X ⊕ Y ⊕ Z for 32 ≤ t < 48,

I(X,Y, Z) = Y ⊕ (X ∨ Z) for 48 ≤ t < 64.

In every round Q requires 3 additions, one cyclic rotation and applies one sub-
function. The cyclic rotation requires 2 shifts and 1 addition. Table 2 shows the
total number of operations for the subfunctions.

Subfunction Logic Operations 16 applications of Q

F 4 176
G 4 176
H 2 144
I 3 160

Total after 64 rounds 656

Table 2. Instruction count of the elementary MD5 functions.

Every subfunction is called 16 times, and together with the arithmetic op-
erations of Q and the cyclic rotation, the total number of native arithmetic
operations for one application of the MD5-compression function will be 656
instructions. Since MD5-crypt basically applies the MD5-compression function
1002 times, it means that one application of MD5-crypt costs 657312 native
arithmetic instructions. It is now possible to calculate performance estimates
based on the specifications of the GPU. For a Nvidia GeForce GTX 295 with
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a clock speed of 1242 MHz and 480 thread processors, the theoretical estimate
of the performance is 1242∗480

657312
∗ 106 ≈ 900.000 MD5-crypt hashes per second. Note

that this calculation only takes the native arithmetic instructions into account,
not the memory accesses. Since MD5-crypt needs numerous calls to memory in
order to generate the inputs (i.e. the concatenation of the password, salt and
result of the previous round) and memory accesses are rather slow, the actual
performance depends on the memory organization of the algorithm. Therefore,
MD5-crypt is a memory intensive algorithm.

4 Optimization strategies

There are several optimization strategies for GPUs, but since it is the memory
that determines the bottleneck in the execution speed of the MD5-crypt algo-
rithm, we will only present the most significant memory optimization strategy
and one optimization strategy for determining the correct execution configura-
tion settings (such as threads per block and gridsize). Amongst memory and
execution configuration optimizations, we also used instruction, control flow and
specific algorithm optimizations.

4.1 Shared memory optimization

Although the warp scheduler uses latency hiding to cover the global memory
latency, the access time of shared memory is almost as fast as register access time
and use of shared memory is therefore preferred over global memory. However,
all virtual threads (at least a thread block) that run on one multiprocessor have
to share the available shared memory and so concurrent threads can access other
thread’s memory addresses. Therefore, the developer has to manage the memory
accesses himself.

Individual threads can access their shared memory addresses concurrently
with the use of equally sized 32-bit wide memory modules, called banks. Because
banks can be accessed simultaneously, any memory load or store of n addresses
that spans n distinct memory banks can be serviced simultaneously, yielding
an effective bandwidth that is n times as high as the bandwidth of a single
bank. On our test device, the shared memory has 16 banks that are organized
in such a way that successive 32-bit words are assigned to successive banks, i.e.
interleaved. A memory request for a complete warp is split into two memory
requests, one for each half-warp, that are issued independently. Each bank has
a bandwidth of 32 bits per clock cycle and since there are 16 banks on a device
and the warp size is 32, accessing all the banks for the threads in a full warp will
take two clock cycles. Bank conflicts arise when multiple threads from the same
half-warp access the same bank. The warp is then serialized, and every thread
that accesses that bank is then executed sequentially.

To minimize bank conflicts, it is important to understand how memory ad-
dresses map to memory banks and how memory requests could be optimally
scheduled in a specific implementation. For example, consider the following list-
ing:
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__shared__ unsigned int data[THREADS_PER_BLOCK][16];

unsigned int *buffer = data[threadId];

Above, shared[THREADS_PER_BLOCK][16] is a matrix of integers in the shared
memory where every thread can access its corresponding row, calculated by its
threadId.

No bank conflicts can arise between threads that belong to the first- and
second half warp respectively. The hardware splits a memory request that has
bank conflicts into as many separate conflict-free requests as necessary, decreas-
ing the effective bandwidth by a factor equal to the number of separate memory
requests. In our implementation, every thread needs 16 32-bit words to store
the input for the MD5-crypt function. If we store these arrays successively, the
modular arithmetic of the device will calculate the corresponding bank automat-
ically. However, this causes a 16-way bank conflict (all 16 threads of a half warp
access the first bank, which will lead to 16 serialized requests): thread 0 accesses
address 0 which is mapped to bank 0 (0 ≡ 0 mod 16), thread 1 accesses address
16 which mapped to bank 0 (16 ≡ 0 mod 16),..., thread 15 accesses address 240
which is also mapped to bank 0 (240 ≡ 0 mod 16) (see Figure 2). We used strided
access to solve this bank conflict: every thread now uses 17 words to store the
input and leaves one word unused. The modular arithmetic of the device will
now calculate the correct corresponding banks for all the threads in a half-warp,
as shown in Figure 3 (which is an example with 4 banks). However, this solu-
tion does increase the total amount of shared memory needed to run the kernel
and shared memory is sparse. As a consequence, less threads per block can be
configured to run concurrently on a multiprocessor, which will result in a small
loss in performance.

Fig. 2. Serialized access: bank conflicts arise when multiple threads from the same
half-warp access the same bank.
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Fig. 3. A stride can solve bank conflicts at the cost of increased shared memory usage.

4.2 Execution configuration optimizations

One of the major keys to optimal performance is to keep the hardware as busy
as possible. This implies that the workload should be equally shared between all
the multiprocessors of a device. If the work is poorly balanced across the multi-
processors, they will deliver suboptimal performance. It is therefore important
to optimize the execution configuration for a given kernel. The key concept that
helps to achieve optimal performance is occupancy.

Occupancy is specified as the metric that determines how effectively the
hardware is kept busy by looking at the active warps on a multiprocessor. This
metric originates from the fact that thread instructions are executed sequentially
and therefore the only way to hide latencies and keep the hardware busy when
the current warp is paused or waiting for input, is to execute other warps that are
available on the multiprocessor. Occupancy is therefore defined as Wa

Wmax
, where

Wa is the number of active warps per multiprocessor and Wmax is the maximum
number of possible active warps per multiprocessor (which is 32 for our test
device). Occupancy is kernel (and thus application) dependent, which means
that some kernels achieve higher performance with lower occupancy. However,
low occupancy always interferes with the ability to hide memory latency, which
results in a decrease of performance. On the other hand, higher occupancy does
not always implies higher performance, but it may help to cover the latencies
and achieve a better distribution of the workload.

5 Experimental evaluation

To measure the performance of our implementation and to compare it against
implementations on other hardware platforms, we use the password hashes per
second metric. This enables us to estimate the time it takes to crack real pass-
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words. Let N be the size of the search space, then this metric is measured by
counting the number of clock cycles it takes for all N threads to:

– Generate a candidate password.
– Calculate a MD5-crypt hash.
– Compare the hash against the target hash.

To compute the execution time (in seconds s), the total number of clock cycles
C is divided by the number of clock cycles that a given device can execute
per second. Finally, the number of hashes per second is calculated as N

s
. Our

implementation supports multiple GPUs, but we have ran our tests on one Nvidia
GeForce 295 GTX (which has in fact 2 GPUs on its board). To compare the
implementation with CPU hardware, we used an equally priced Intel i7 920
processor.

5.1 Algorithm optimizations

We describe and measure multiple optimizations for increasing the execution
speed of the computations on a GPU. After we have defined a baseline (point
1), four optimizations are compared to this baseline (point 2 to 5). Then, the
optimizations are combined (point 6 and 7).

1. Baseline. This is the implementation which does not use any optimization
at all. Moreover, all the variables are stored in the local (i.e. global) memory
and the allocation of the memory is done automatically.

2. Constant memory. The variables that do not change during the execution,
such as target hash, salt and character set, are now stored in the constant
memory. The other variables are still stored in local memory.

3. Shared memory (bank conflicts). The following variables are stored in shared
memory, since they are accessed often during execution time:
– Input buffer (int data[THREADS_PER_BLOCK][16]).
– Resulting hash (int final[THREADS_PER_BLOCK][4]).
– Password (unsigned char password[THREADS_PER_BLOCK][8]).

However, bank conflicts and thus warp serializes occur, which slow down the
execution. The non-changing variables are still stored in the local memory.

4. Shared memory (no bank conflicts). The allocation of the shared memory is
now done is such a way that no bank conflicts occur. With a strided access
pattern every thread can access its own bank such that warp serializes are
kept to a minimum, which increases the performance (at the cost of a little
increase in total shared memory used).

5. Optimized MD5. The MD5-compression function is statically optimized. De-
pending on the password length, only the necessary calculations are per-
formed (e.g. for passwords with a length smaller than 9 characters). The size
of the input buffer can then be decreased from 16 to 10
(int data[THREADS_PER_BLOCK][10]).

6. Shared and constant memory (no bank conflicts). Now both the changing
(e.g. input buffer) and non-changing variables (e.g. salt) are kept in shared
and constant memory respectively.
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7. Optimized MD5 with shared and constant memory. In addition to point 6,
the optimized version of the MD5-compression function is used as well.

During all measurements, the configuration parameters are kept equal. The num-
ber of thread blocks (gridsize) is set to ‘1200’ (since this is a multiple of ‘60’,
which is the number of multiprocessors on a Nvidia GTX 295) and the number
of threads per block (blocksize) is set to ‘160’ (since this is the maximum num-
ber for all optimizations to have enough shared memory available). In Figure
4 the performance increase per optimization is shown in black, combined opti-
mizations are shown in gray. The figure shows that the shared memory (without

Fig. 4. Performance increase per optimization, executed on a Nvidia GeForce GTX
295.

bank conflicts) and MD5-compression function optimization achieve speedups of
3 and 2 times the baseline respectively. However, when we combine both opti-
mizations, the speedup is only a little over 3 times compared to the baseline.
This can be explained by the fact that the MD5-compression function optimiza-
tion reduces the number of memory calls. While this optimization achieves a
significant performance increase when all variables are stored in local memory,
only little performance increase is gained when all variables are stored in shared
memory (since this type of memory has low latency). Furthermore, the figure
also shows that there is very little performance increase when the non-changing
variables are stored in constant memory and the other variables are stored in
shared memory compared to storing all the variables in shared memory (point 6
and 4 respectively). This can be explained by the fact that the compiler stores
frequently used variables in the constant memory by itself and keeps a copy in
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local memory too (when a constant cache miss arises). Finally, the figure shows
that storing variables in the shared memory while not solving the bank conflicts
even degrades the performance compared to the baseline.

5.2 Configuration optimizations

As stated in Section 4.2, occupancy is defined as Wa
Wmax

. The influence of occu-
pancy on our most optimal implementation (”Optimized MD5 with shared and
constant memory”) is shown in Figure 5. The number of threads per block deter-
mines Wa and thus the final performance. Due to physical limits of the available

Fig. 5. Influence of the number threads per block on the performance of our most
optimal implementation, executed on a Nvidia GeForce GTX 295. Note that “hashes
per second” refers to password hashes, i.e. MD5-crypt operations.

shared memory (16384 bytes per block), the maximum number of threads per
block for our implementation is smaller than the physical limit. For example, if
we store the password (8 bytes + 1 byte for strided access), input buffer (4 *
(10 + 1) bytes) and resulting hash (4 * (4 + 1) bytes) in shared memory, the
maximum number of threads per block for our implementation is b 16384

73
c = 224.

Therefore Wa (active warps per multiprocessor) is 7, which results in an occu-
pancy of 7

32
≈ 22%.

The figure shows a characteristic behavior with stair-like graphs. Multiples
of the warp size (32) and half warp size (16) result in more optimal performance,
since this ensures that no incomplete warps are executed. In addition, the number
of threads per block should be higher then 8×24 = 192, since the latency of register
read-after-write dependencies is approximately 24 cycles and a multiprocessor
has 8 thread processors.
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5.3 Comparison against CPU implementations

We compared our implementation to the fastest MD5-crypt CPU implemen-
tation known to us, which is incorporated in the password cracker ‘John the
Ripper’ [27]. However, John the Ripper does not have support for parallel CPU
implementations of MD5-crypt. In order to fully use all four cores of the Intel i7
920, we used the OpenMP library to parallelize our CPU implementation3. Fig-
ure 6 shows the performance of MD5-crypt implementations on equally priced
GPU and CPU hardware. Our GPU implementation (about 880 000 hashes per
second) achieves a speedup of 28 times over our CPU implementation (about 32
000 hashes per second) and a speedup of 104 times over the John the Ripper
CPU implementation (about 8500 hashes per second). With this performance
increase and using a few high-end GPUs, ‘complex’ passwords with a length of
8 characters can be searched effectively.

Fig. 6. Performance comparison of different implementations on different architectures.

5.4 Speedup comparison against other cryptographic
implementations

Table 3 shows the different speedups GPUs can achieve over CPUs. Note that
not all experiments were carried out on equally priced hardware, which influ-
ences the final outcome. Moreover, process variations in hardware and constant
improvements of GPU and CPU chips, CPU implementations, and CPU tech-
nologies (e.g. the use of the SSE instruction set) will lead to changes in the GPU
/ CPU run-time ratio. However, the table proves that GPUs can be efficiently
used to perform cryptographic operations, or at least can act as a cryptographic
‘co-processor’. The major difference between the speedup for hashing and other

3 Please note that optimizing the CPU implementation was not in scope of this re-
search, therefore a port of our GPU implementation is used.



Speeding up GPU-based password cracking

49 SHARCS 2012 Workshop Record

Work Cryptographic type Algorithm Speed up GPU over CPU

[18,20] Asymmetric ECC 4-5
[9] Symmetric AES 5-20
[28] Symmetric AES 4-10
[17] Asymmetric RSA 4
This work Hashing MD5-crypt 25-30

Table 3. Speed up GPU over CPU for different cryptographic applications.

cryptographic types comes from the fact that hash functions are solely build out
of native arithmetic instructions (such as shifts, additions and logical operators)
that have high throughput on a typical GPU. RSA and ECC, in contrast, are
build out of modular multiplications and other modular arithmetic operations,
which have lower throughput than native arithmetic instructions. In addition,
password hashing allows for a maximal parallelization whereas, for example, with
AES not all modes of encryption can be used for parallelization (e.g. Cipher-block
Chaining or Cipher Feedback mode).

5.5 Consequences for practical use of password hashing schemes

We have shown that in the field of exhaustive searches on the password hashing
scheme MD5-crypt, GPU’s can significantly speed up the cracking process. To
determine if this speedup is significant enough to attack systems that use such
password hashing schemes, we have to see how our implementation performs in
terms of cracking time. To see whether the passwords are crackable in a feasible
amount of time, we defined four password ‘classes’:

1. Passwords consisting of only lowercase ASCII characters (26 in total)
2. Passwords consisting of lowercase and numeric ASCII characters (36 in total)
3. Passwords consisting of lowercase, numeric and uppercase ASCII characters

(62 in total)
4. Passwords consisting of lowercase, numeric, uppercase and special ASCII

characters (94 in total)

Table 5.5 shows the search times for four password classes and some password
lengths, given our maximum performance on a Nvidia GeForce GTX 295 (880
000 hashes per second).

To decrease the percentage of passwords that can be recovered with exhaustive
searches on prevalent graphics hardware, the following methods could be used:

– Increase the entropy of the user password by enforcing a password policy.
– Increase the complexity of the password hashing scheme in such a way that

one user is able to hash his password, but exhaustive searches take too much
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Length 26 characters 36 characters 62 characters 94 characters

4 0,5 Seconds 2 Seconds 16 Seconds 2 Minutes
5 13 Seconds 1 Minute 17 Minutes 2 Hours
6 5 Minutes 41 Minutes 18 Hours 10 Days
7 2 Hours 1 Days 46 Days 3 Years
8 2 Days 37 Days 8 Years 264 Years
9 71 Days 4 Years 488 Years 20647 Years
10 5 Years 132 Years 30243 Years 2480775 Years

Table 4. Exhaustive search times of some password lengths on a Nvidia GeForce GTX
295 with a performance of 880 000 hashes per second.

time to complete for multiple candidate passwords. This can be achieved
by increasing the number of calls to the underlying hash function (e.g. by
increasing the number of iterations in the key-stretching technique).

The first method increases the search space exponentially while the second
method only linearly increases the time needed to iterate over the search space.
Therefore, it is better to enforce users to increase the entropy in their passwords.
Even so, if all users would pick passwords with high entropy, the use of password
hashing schemes would be superfluous.

If we want to increase the complexity of password hashing schemes in such a
that they may be able withstand exhaustive search attacks on current hardware,
we could use the following rule of thumb: One application of the password hashing
scheme should not execute in less than 10 milliseconds on specialized hardware4.
If we apply this rule to MD5-crypt, the number of iterations should be increased
with four orders of magnitude (from 1000 to 10 000 000 iterations).

6 Conclusions

In this work we have shown that GPUs can be used for launching exhaustive
search attacks on password hashing schemes that rely on the key strength of
user-chosen passwords. The possibility to parallelize the attacks enabled us to
optimize the implementation of one password hashing scheme, MD5-crypt. Our
implementation achieves a speedup of two orders of magnitude over the best
known existing CPU implementation. This performance approaches the theo-
retical speed limit on a CUDA enabled GPU. Moreover, with this performance
increase, ‘complex’ passwords with a length of 8 characters are now becoming
feasible to crack.

4 The designer of MD5-crypt used this rule of thumb to determine the number of
iterations in his algorithm.
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Appendix: Design of MD5-crypt

MD5-crypt is the standard password hashing scheme for FreeBSD operating
systems, supported by most Linux distributions (in the GNU C library) and
implemented in Cisco routers. It was designed by Poul-Henning Kamp in 1994.
Figure 7 shows the schematic overview of the MD5-crypt implementation. The
figure only shows the most relevant parts and abstracts from initializations.
Basically, MD5-crypt applies the MD5-compression function 1002 times:

– In the first application, the concatenation of the password, salt and password
again is hashed.

– In the second application, the concatenation of the password, magic string
(‘$1$’), salt and the result of the first application is hashed.

– In the next thousand applications, the concatenation of the password, salt
and result of the previous application is hashed based on the round number
n. The pseudo code of this application is shown in Algorithm 1.
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Algorithm 1 MD5-crypt pseudo code, main loop.

1: for i = 0, i < 1000, i++ do
2: msglen = 0
3: for j = 0, j < 16, j++ do
4: buffer[j] = 0
5: end for
6: if i & 1 then . Case i is odd
7: set(buffer,password)
8: msglen += len(password)
9: else . Case i is even

10: set(buffer,final) . Add the result of last round
11: msglen += 16
12: end if
13: if i % 3 then . Case i - 3
14: set(buffer,salt)
15: msglen += len(salt)
16: end if
17: if i % 7 then . Case i - 7
18: set(buffer,password)
19: msglen += len(password)
20: end if
21: if i & 1 then . Case i is odd
22: set(buffer,final) . Add the result of last round
23: msglen += 16
24: else . Case i is even
25: set(buffer,password)
26: msglen += len(password)
27: end if
28: set(buffer,0x80) . Add the binary 1
29: set(buffer,msglen << 3) . Add the message bit length
30: MD5Compress(final,buffer) . Call MD5 and store result in final
31: end for
32: if target == final then . Match with target
33: setFlag(inputPassword)
34: end if
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Fig. 7. Schematic overview of MD5-crypt.
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Abstract

Many important enemy code systems were broken by the US Army and Navy during
World War II with the help of a variety of special-purpose analytic machinery. Among
the most important of these were special adaptations of commercial IBM card ma-
chines, developed to automate specific time-consuming tasks both in initially solving
enemy cryptosystems and then in routinely deciphering intercepted messages. Other
innovative cryptanalytic hardware developed during the war used optical, paper-tape,
and other storage devices that pushed electro-mechanical computing to its technologi-
cal limits in this era just prior to the dawn of the digital revolution.
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1 Introduction

Cryptol was designed by Galois, Inc. for the NSA as a domain-specific
language for specifying cryptographic algorithms, eliminating the need
for separate and voluminous natural language documentation. Cryptol is
tailored to the unique needs of cryptography and cryptographic imple-
mentations. It is fully executable, allowing cryptographers to experiment
with their programs incrementally as their designs evolve, with the com-
piler checking the consistency of data types and array lengths at every
stage. These same attributes make Cryptol a good language for express-
ing cryptanalysis algorithms, providing a platform to explore different
approaches and carry out experiments at low cost. In addition, Cryptol
provides a refinement methodology to bridge the conceptual gap between
specification and low-level implementation, and can generate both hard-
ware and software implementations from high-level specifications, as well
as formal models for verification. For example, Cryptol allows engineers
and mathematicians to program cryptographic algorithms on FPGAs as if
they were writing software, and the Cryptol verification toolset can show
functional equivalence between the specification and the implementation
at each stage of the tool-chain. In addition, the Cryptol verification toolset
can be usefully applied to the reference specification of cryptographic al-
gorithms. Proving desirable high-level properties of a cryptographic algo-
rithm gives assurance of its robustness, while conversely finding counter-
examples of desirable properties may inspire approaches to cryptanalysis.

2 Cryptol Case Studies

2.1 Exploring an algorithm

The AIM crypto-engine engineers at General Dynamics C4 Systems use
the Cryptol modeling language as part of the development process. Cryp-
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tol provides four basic benefits leading to the certification of crypto equip-
ment. First, Cryptol allows the design engineer to rapidly express an al-
gorithm in a common mathematical notation, which is fully executable
on the Cryptol interpreter, providing verification that the algorithm is
completely understood. Second, the Cryptol notation for the various com-
ponents of the algorithm are used to annotate the AIM micro sequencer
code which provides much greater readability of that extremely dense
assembly language. Third, component testing of AIM code, from small
snippets through major subroutines is greatly facilitated with Cryptol
generated test vectors derived from end-to-end test vectors provided in
algorithm source specifications. Finally, Cryptol models directly support
the certification effort.

2.2 Produce and refine a family of designs

A team of developers from Rockwell Collins, Inc. and Galois, Inc. has
successfully designed, implemented, simulated, integrated, analyzed, and
tested a complex embedded Cryptographic Equipment Application (CEA)
in less than 3 months. An algorithm core generated from a Cryptol specifi-
cation for AES-256 running in Electronic Codebook mode demonstrated
throughput in excess of 16 Gbps. These high-speed CEA implementa-
tions comprise a mixture of software and VHDL, and target a compact
new embedded platform designed by Rockwell Collins. Notably, almost
no traditional low-level interface code was required in order to implement
these high-performance CEAs. In addition, automated formal methods
prove that algorithm implementations faithfully implement their high-
level specifications.

2.3 Gaining confidence in an implementation

Van der Waerdens theorem states that for any positive integers r and
k there exists a positive integer N such that if the integers 1, 2, ..., N
are each colored with one of r different colors, then there are at least k
integers in arithmetic progression all of the same color. For any r and
k, the smallest such N is the van der Waerden number W(r,k). Van de
Waerden numbers are difficult to compute. In 2007, Dr. Michal Kouril of
the University of Cincinnati established that W(2,6)=1132 (i.e., 1132 is
the smallest integer N such that every 2-coloring of 1, 2, ..., N contains
a monochromatic arithmetic progression of length 6). The most recent
previous result, W(2,5)=178, was discovered some 30 years earlier. Kouril
computed W(2,6) using a special SAT-solver and clever techniques to
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bound the search and employed FPGAs to speed up the search. In order
to convince himself that the FPGA ensemble was doing what he expected,
he wrote a Cryptol specification for the algorithm running in the FPGA
ensemble, generated formal models for both the Cryptol specification and
the VHDL implementation, and verified that the two were equivalent.

2.4 Gaining confidence in a third-party implementation

Skein is a suite of cryptographic hash algorithms targeted at the NIST
SHA-3 competition. At its core, Skein uses a tweakable block cipher
named Threefish. The unique block iteration (UBI) chaining mode de-
fines the mode of operation by the repeated application of the block ci-
pher function. Galois has developed and published a Cryptol specification
for Skein, and verified two independently developed VHDL implementa-
tions of Skein against our specification, finding an ambiguity bug in one
of them.

2.5 Building a MILS FPGA

The Xilinx Single Chip Cryptographic (SCC) technology enables Multiple
Independent Levels of Security (MILS) on a single FPGA. Galois Cryptol
Workbench provides a tool flow that puts FPGA implementation into the
hands of mainline developers, improving both productivity and assurance,
without sacrificing performance. These two technologies fit seamlessly
into a single development flow. The combined solution can address high-
grade cryptographic application requirements (redundancy, performance,
red/black data, and multiple levels of security on a single chip) as well as
high assurance development needs (high-level designs, automatic genera-
tion of implementation from design, automatically-generated equivalence
evidence), and has the potential to significantly reduce the time of costs
of developing Type-1 cryptographic applications.

3 Try Cryptol for your Applications

The Cryptol interpreter is freely available at www.cryptol.net. Documen-
tation and evaluation copies of the full Cryptol toolset are also available
at that site.
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Abstract. At present, the RSA cryptosystem is most widely used in public key cryptography. On
the other hand, elliptic curve cryptography (ECC) has recently received much attention since smaller
ECC key sizes provide the same security level as RSA. Although there are a lot of previous works that
analyze the security of ECC and RSA, the comparison of strengths varies depending on analysis. The
aim of this paper is once again to compare the security strengths, considering state-of-art of theory
and experiments. In this paper, we compare the computing power required to solve the elliptic curve
discrete logarithm problem (ECDLP) and the integer factorization problem (IFP), respectively, and
estimate the sizes of the problems that provide the same level of security.

1 Introduction

After Rivest, Shamir, and Adleman proposed the RSA cryptosystem in 1977 [36], Koblitz and
Miller independently proposed ECC in 1985 [19, 26, 30]. The security of RSA is closely related
to the hardness of the IFP, while the security of ECC is closely related to the hardness of the
ECDLP. If we can solve the IFP (or the ECDLP), we can break RSA (or ECC), respectively.
Currently, subexponential-time algorithm to solve the IFP are known. On the other hand,
the best known algorithm to solve the ECDLP has fully exponential running time. This fact
ensures that smaller ECC key sizes provide the same security level as RSA. The advantages of
smaller key sizes are very important to use devices with limited processing capacity, storage
or power supply, like smart cards. Hence ECC can be used more widely in the future, and
it is important to compare the security strengths of ECC and RSA in order to embed ECC
into information systems. In this paper, we mainly estimate the computing power required
to solve the ECDLP and the IFP in a year, respectively. Using special-purpose hardware for
the IFP or the ECDLP is a theme of great interest and there are some previous works, such
as [18, 21, 40, 41]. However, these platforms and architectures vary, and it is difficult to make
an analysis on the cost performance. Hence we would like to leave it as a future work, and
in this paper we focus on the hardness of the IFP and the ECDLP from the view point of
software implementation.

Although a number of ways to solve the ECDLP are known, Pollard’s rho method [34]
is the fastest known algorithm for solving the ECDLP except special cases such as the
supersingular cases and the anomalous cases [11, 19, 29, 38, 39, 42]. The rho method works
by giving a pseudo-random sequence defined by an iteration function and then detecting
a collision in the sequence (see [19] for details of the rho method). The running time of
the rho method is determined by the number of iterations before obtaining a collision and
the processing performance of iterations. Since the number of iterations heavily depends on
iteration functions, we first discuss the choice of iteration functions suitable for solving the
ECDLP. Since the rho method is probabilistic, we next estimate the number of iterations
required to solve the ECDLP with very high probability based on our experiments of solving
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the ECDLP of relatively small parameters (We here consider the success probability of the
rho method as 99%). With respect to the processing performance of iterations, we need
to evaluate it as strictly as possible. Note that the processing performance of iterations is
related with operations on elliptic curves. We implemented operations on elliptic curves by
using our library for arbitrary length integers, but our implementation results were far from
previously known records (see [2, 4] for example). We then use the previously known records
to estimate the processing performance of iterations. Furthermore, we focus on three types
in the ECDLP, namely, prime fields, binary fields, and Koblitz curves types.

On the other hand, it is known that the general number field sieve method (GNFS)
is the most efficient known algorithm for solving the IFP of large composite integers [27].
CRYPTREC Report 2006 [10] gives the expected computing power required to solve the IFP
of N -bit composite integers with N = 768, 1024, 1592 and 2048 based on experiments of the
GNFS. To estimate the computing power required to solve the IFP, we use the CRYPTREC
results and the well-known heuristic complexity of the GNFS.

The outline of this paper is as follows: In Section 2, we review the rho method for solving
the ECDLP to fix our notation. In Section 3, we summarize previously known results of
the security evaluation of ECC and the strength comparison of ECC and RSA. In Section
4, we discuss on the rho method for solving the ECDLP based on previous and our own
experimental results. In Section 5, we estimate the computing power required to solve the
ECDLP and the IFP respectively, and calculate the bit sizes of the ECDLP and the IFP
that provide the same level of security. Finally in Section 6, we conclude our work.

2 Pollard’s rho method for the ECDLP

To fix our notation, we review the rho method for the ECDLP mainly due to [19].

2.1 Basic idea of the rho method

Definition 1 (ECDLP). Given an elliptic curve E defined over a finite field Fq with q
elements, a point S ∈ E(Fq) of prime order n, and a point T ∈ 〈S〉, find the integer k ∈
[0, n − 1] with T = kS.

Fix an iteration function f : 〈S〉 → 〈S〉 such that it is easy to compute X ′ = f(X)
and c′, d′ ∈ [0, n − 1] with X ′ = c′S + d′T for given X = cS + dT . For a starting point
X0 = c0S + d0T with randomly chosen c0, d0 ∈ [0, n − 1], we define a sequence {Xi}i≥0 by
Xi+1 = f(Xi) for i ≥ 0. It follows from the property of the iteration function f that we
can easily compute ci, di ∈ [0, n − 1] with Xi = ciS + diT . Since the set 〈S〉 is finite, the
sequence will eventually meet a point that has occurred before, which is called a collision.
A collision Xi = Xj with i 6= j gives the relation ciS + diT = cjS + djT . Since we have
(ci − cj)S = (dj − di)T = (dj − di)kS, we can compute the solution

k = (ci − cj) · (dj − di)
−1 mod n

of the ECDLP if dj 6≡ di mod n. This is the basic idea of the rho method for solving the
ECDLP (see [19, pp. 157- 158] for details).
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Since a collision gives the solution of the ECDLP with very high probability, the number
of iterations before obtaining a collision is significant for the running time of the rho method.
To solve the ECDLP efficiently, we take an iteration function f with the characteristic of
a random function. If f is a random function, the expected number of iterations before
obtaining a collision is approximately

√
πn/2 ≈ 1.2533

√
n

by the birthday paradox.

2.2 Improving the rho method

Parallelized rho method: Van Oorshot and Wiener [45] proposed a variant of the rho
method that yields a factor M speed up when M processors are employed. The idea is to
allow the sequences {X

(j)
i }i≥0 generated by the processors to collide with one another. More

precisely, each processor randomly selects its own starting point X
(j)
0 , but all processors use

the same iteration function f to compute subsequent points X
(j)
i .

Collision detection: Floyd’s cycle-finding algorithm [25] finds a collision in the sequence
generated by a single processor. The following strategy enables efficient finding of a collision
in the sequences generated by different processors. An easy testable distinguishing property
of points is selected. For example, a point may be distinguished if the leading t bits of its
x-coordinate are zero. Let 0 < θ < 1 be the proportion of points in the set 〈S〉 having this
distinguishing property. Whenever a processor encounters a distinguished point, it transmits
the point to a central server which store it in a sorted list. When the server receives the same
distinguished point for the second time, it computes the desired logarithm and terminates all
processors. The expected number of iterations per processor before obtaining a collision is
(
√

πn/2)/M , when M processors are employed. A subsequent distinguished point is expected
after 1/θ iterations. Hence the expected number of elliptic curve operations performed by
each processor before observing a collision of distinguished points is

1

M

√
πn

2
+

1

θ
.

We note that the running time of 1/θ iterations after a collision occurs is negligible for the
total running time if we select θ such that 1/θ is small enough compared to the order n of
the point S.

Speeding up the rho method using automorphisms: Wiener and Zuccherato [46]
and Gallant, Lambert and Vanstone [17] show that we can speed up the rho method using
automorphisms. Let ψ : 〈S〉 → 〈S〉 be a group automorphism of order r such that ψ can be
computed very efficiently. We define an equivalence relation ∼ on the set 〈S〉 by

P ∼ Q ⇐⇒ P = ψj(Q) for some j ∈ [0, r − 1].

We denote the set of equivalence classes by 〈S〉/ ∼, and let [P ] denote the equivalence class
containing a point P . The idea of the speed-up using the automorphism ψ is to modify an
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iteration function on 〈S〉 so that it is defined on 〈S〉/ ∼. To achieve this, we can define an
iteration function f on 〈S〉/ ∼ by

f([P ]) := [g(P )]

for an iteration function g on 〈S〉. Since almost all equivalence classes have size r, then the
collision search space has size approximately n/r. Hence the expected number of iterations
of the rho method sped up by the automorphism ψ is

√
πn

2r
,

which is a speed-up by a factor of
√

r.
Any elliptic curve has the negation map ψ(P ) = −P of order 2 as an automorphism.

Since the negation map can be computed efficiently, it is useful to use the speed-up of the rho
method. Hence the expected number of iterations of the rho method sped up by the negation
map is

√
πn
2

, which is a speed-up by a factor of
√

2. Koblitz curves were first suggested for
use in cryptography by Koblitz [26]. The defining equation for a Koblitz curves E is

E : y2 + xy = x3 + ax2 + b,

where a, b ∈ F2 with b 6= 0. The Frobenius map φ : E(F2m) → E(F2m) is defined by

φ : (x, y) 7→ (x2, y2) and φ : O 7→ O,

where O is the point of infinity of E. We note that the Frobenius map is a group automor-
phism of order m on the group E(F2m) and can be computed efficiently since squaring in
F2m is relatively inexpensive (see [19] for details). Using both the Frobenius and the negation
maps, the rho method on Koblitz curves is sped up. The expected number of iterations of
the rho method sped up by both the Frobenius and the negation maps is

1

2

√
πn

m
,

which is a speed-up by a factor of
√

2m.

3 Previously known results on the strength comparison

In this section, we summarize previously known results of the security evaluation of ECC
and the strength comparison of ECC and RSA: In Table 1, we show the comparable security
strengths for the approved algorithms by NIST SP 800-57 [32, Table 2 in p. 63]. We also
show the evaluation of solving the ECDLP by ANSI X9.62 [1] in Table 2: For example, the
data of Table 2 imply that we need to have a computer with 8.5 × 1011 MIPS to solve the
ECDLP of 160-bit in a year. It needs 485 years to solve the ECDLP of 160-bit even if we
use a ‘Jaguar’, which is one of the most powerful computers in the world and has 1.75×1015

FLOPS (≈ 1.75×109 MIPS). Furthermore, we summarize results of the comparable security
strengths of ECC and RSA given by certain organizations in Table 3.
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Table 1. The comparable security strengths by NIST SP 800-57 [32]

Bits of Symmetric key FFC IFC ECC
security algorithms (e.g., DSA, D-H) (e.g., RSA) (e.g., ECDSA)

80 2TDEA L = 1024, N = 160 k = 1024 f = 160 − 223
112 3TDEA L = 2048, N = 224 k = 2048 f = 224 − 255
128 AES-128 L = 3072, N = 256 k = 3072 f = 256 − 383
192 AES-192 L = 7680, N = 384 k = 7680 f = 384 − 511
256 AES-256 L = 15360, N = 512 k = 15360 f = 512+

L is the size of the public key and N is the size of the private key. The values of k and f are
commonly considered to be the key size.

Table 2. The evaluation of solving the ECDLP by ANSI X9.62 [1]

bit size of n
√

πn/4 MIPS year
160 280 8.5 × 1011

186 293 7.0 × 1015

234 2117 1.2 × 1023

354 2177 1.3 × 1041

426 2213 9.2 × 1051

4 Discussion on the rho method for solving the ECDLP

In this section, we first discuss the choice of iteration functions suitable for solving the
ECDLP. We next estimate the number of iterations before obtaining a collision and the
processing performance of iterations.

4.1 Choice of suitable iterations

We discuss the choice of iteration functions suitable for solving the ECDLP.

Prime and binary fields cases : A typical iteration function is as follows: Let {H1, H2, . . . , HL}
be a random partition of the set 〈S〉 into L sets of roughly the same size. We call the number
L a partition number. We write H(X) = j if X ∈ Hj. For aj, bj ∈R [0, n − 1], 1 ≤ j ≤ L, set
Mj = ajS + bjT ∈ 〈S〉. Then we can define an iteration function by

fTA(X) = X + Mj, where j = H(X).

For given a point X = cS + dT , we can compute X ′ = fTA(X) = c′S + d′T with c′ =
c + aj mod n and d′ = d + bj mod n. This iteration function is called an L-adding walk
proposed by Teske (see [43, 44]). Teske also investigated the performance of some iteration
functions and showed that the L-adding walk has better performance than the other iteration
functions. To analyze the performance of the L-adding walk accurately, we solved the ECDLP
over both prime and binary fields of 40 and 50 bits. In the followings, we describe our
experiments:

– We used parallelized rho method with M = 10 processors and collision detection using
distinguished points having 1/θ small enough compared with the order n of the point S.
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Table 3. The comparison of security strengths of ECC and RSA with 80-bit security

Report ECC RSA
NIST [32] 160 1024
Lenstra [28] 160 1300
RSA Labs. [37] 160 760
NESSIE [31] 160 1536
IETF [33] - 1228
ECRYPT II [14] 160 1248ECDLP over prime field of 40-bit

00.511.522.533.5

3 5 10 15 20 30 50 70 100partition numberaverage of th
e performanc
e ECDLP over prime field of 50-bit

00.511.522.533.5

3 5 10 15 20 30 50 70 100partition numberaverage of th
e performanc
e

Fig. 1. Experimental results on the average of δ(fTA) for the ECDLP over prime fields of 40
and 50 bits (Exp =

√
πn/2, without the speed-up using the negation map)

– We used the L-adding walk fTA with some 3 ≤ L ≤ 100. For each parameter, we solved
the ECDLP for 100 times with randomly chosen starting points. Note that we did not
use the speed-up with the negation map in our experiments.

To analyze the performance of an iteration function f , we consider the value

δ(f) := (The number of iterations f before obtaining a collision) /Exp,

where ‘Exp’ denotes the expected number of iterations (see §2 for details). Note that f has
the performance very close to that of random walks and is suitable for solving the ECDLP
if δ(f) is very close to 1. We show our experimental results on the average of δ(fTA) in Fig.
1 and 2. In [44], Teske analyzed the performance of the L-adding walk by experiments on
the ECDLP over prime fields of 5 − 13 digits and concluded that the L-adding walk has the
performance very close to that of random walks if L ≥ 16. On the other hand, it follows
from our experimental results that the average of δ(fTA) is very close to 1 in both Fig. 1
and 2 if L ≥ 20. Hence the L-adding walk with L ≥ 20 has the performance of very close to
that of random walks on average. In using the speed-up with the negation map, we have to
deal with the fruitless cycles. Note that choosing larger L decreases the chance of hitting a
fruitless cycle, and hence it helps us to reduce the frequency for checking fruitless cycles.

Koblitz curves case : We next consider Koblitz curves case. To solve the ECDLP on Koblitz
curves, Gallant, Lambert and Vanstone proposed an iteration function suitable for the rho
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ECDLP over binary field of 40-bit

00.511.522.53

3 5 10 15 20 30 50 70 100partition numberaverage of the
 performance

ECDLP over binary field of 50-bit

00.20.40.60.811.21.41.61.82

3 5 10 15 20 30 50 70 100partition numberaverage of the
 performance

Fig. 2. Experimental results on the average of δ(fTA) for the ECDLP over binary fields of
40 and 50 bits (Exp =

√
πn/2, without the speed-up using the negation map)

method with the speed-up using both the Frobenius and the negation maps as follows [17]:
Let E be a Koblitz curve and let E/ ∼ denote the set of equivalence classes defined by the
Frobenius map φ and the negation map. We define an iteration function

g : X 7→ X + φj(X), j = hashm(L(X))

on the group E(F2m), where hashm is a conventional hash function (in the computer science)
with range [0,m− 1] and L is a labeling function from the set E/ ∼ to some set of represen-
tatives. For example, the labeling function L takes the lexicographically least x-coordinate
of the elements of the equivalent class. Using the iteration function g, we give an iteration
function fGLV on the set E/ ∼ defined by

fGLV([X]) = [g(X)] for X ∈ E,

which is the iteration function proposed by Gallant, Lambert and Vanstone (see also §2.2).
Note that the iteration function fGLV is a well-defined map on E/ ∼. In our paper [48], we
proposed an iteration function on Koblitz curves which is an extension of fGLV based on the
Teske’s idea [43]. For 0 ≤ s ≤ m, we define an iteration function on Koblitz curve E(F2m)
given by

gs(X) =

{
2X if 0 ≤ j ≤ s,
X + φj(X) otherwise,

where j = hashm(L(X)). As above, we define fGLV,s by fGLV,s([X]) = [gs(X)] for X ∈ E.
Clearly, the iteration function fGLV,s with s = 0 is equal to fGLV. We also analyzed the per-
formance of fGLV,s by solving the ECDLP on Koblitz curves E(F2m) with m = 41, 53, 83 and
89 for 100 times with randomly chosen starting points. In Table 4, we give our experimental
result on the average of δ(fGLV,s) from [48, Table 3]. From Table 4, we see the followings: The
number of iterations fGLV,s before obtaining a collision increases as the parameter s becomes
large on average. Furthermore, the iteration function fGLV has the performance very close
to that of random walks on average since the average value of δ(fGLV,s) with s = 0 is very
close to 1.
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Table 4. Experimental result on the average of δ(fGLV,s) for s = 0,m/5,m/3,m/2 on Koblitz

curves E(F2m) with m = 41, 53, 83 and 89 from [48, Table 3] (Exp = 1
2

√
πn/m)

s = 0 s = m/5 s = m/3 s = m/2

m = 41 1.06 1.14 1.29 1.17
m = 53 1.10 0.96 1.12 1.26
m = 83 1.03 0.99 1.25 1.16
m = 89 1.01 1.20 1.08 1.29

average 1.05 1.07 1.18 1.22

Remark 1. For solving the ECC2K-130 which is one of the Certicom ECC challenges on
Koblitz curves [13], the authors in [2, 5, 7] proposed an iteration function on E/ ∼ as follows
(see also [20] for the iteration used to solve the ECC2K-95 and the ECC2K-108):

f([X]) = [g(X)], g(X) = X + φj(X), j = ((HW(x)/2 mod 8) + 3), (1)

where HW(x) is the Hamming weight of the x-coordinate of a point X ∈ E. Although this
function has the advantage of the fast processing performance, this function might reduce the
randomness of the walk due to using HW(x) (see [7, Appendix B] for details). The authors
analyzed the randomness of this function based on a refinement of the heuristic method
given by Brent and Pollard [8]. Their analysis shows that the number of iterations with this
function is expected to be about 1.07 times of the number of iterations with random walks
on average. In order to estimate the number of iterations required to solve the ECDLP with
99% probability, we used fGLV in our analysis. To investigate the randomness of the function
defined by (1) in more detail is our future work.

Summary : From the above arguments, the iteration function fTA with L = 20 (resp. fGLV)
has the performance very close to that of random walks on average in prime and binary cases
(resp. in the case of Koblitz curves). For simplicity, we denote by fTA[20] the L-adding walk
with L = 20. To evaluate the running time of the rho method, we fix fTA[20] (resp. fGLV)
as an iteration function in the cases of prime and binary fields (resp. in the case of Koblitz
curves).

4.2 Number of iterations of the rho method for the ECDLP

We estimate the number of iterations required to solve the ECDLP with very high probability.

Prime and binary fields cases : In Fig. 3 and 4, we give our experimental results on distribu-
tions of the number of iterations fTA[20]. Data of Fig. 3 (resp. Fig. 4) are obtained by solving
the ECDLP over prime field (resp. binary field) of 40-bit for 10, 000 times with randomly
chosen starting points (note that we did not use the speed-up with the negation map). As
the numbers of iterations before obtaining a collision can be modeled as waiting times, it is
reasonable to approximate the graph by Γ-distribution. The theoretic value in Fig. 3 and 4
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Fig. 3. Distribution of the frequencies of the number of iterations of the rho method for
solving the ECDLP over prime field of 40-bit (1 =

√
πn/2 : the expected number of iterations)

is the curve of Γ-distribution, where we set shape parameter k = 3.46 and scale parameter
θ = 0.317 in the probability density function

f(x; k, θ) =
1

θkΓ(k)
xk−1e− x

θ .

With this approximation, we see that we can solve the ECDLP with 99% probability if we
compute iterations of the rho method by three times of the expected number

√
πn/2 (see

§2.1 for the expected number of iterations).
It is known that the iteration function with the speed-up using the negation map can fall

into a short cycle, which is called “fruitless cycle”, and hence the optimal speed-up cannot
be expected in general [16, 17]. Recently, Bernstein, Lange and Schwabe in [6] improved the
rho method for obtaining a speed-up with the negation map and showed a speed-up very
close to

√
2 on hardware with the L-adding walk fTA. To evaluate the running time of the

rho method, we consider
3 · √πn

2

as the number of iterations for solving the ECDLP with 99% probability in these cases.

Koblitz curves case : Data of Table 4 shows that the number of iterations fGLV on Koblitz
curve E(F2m) before obtaining a collision is very close to 1

2

√
πn/m on average. We also

expect that the iteration function fGLV has Γ-distribution same as Fig. 3 and 4. Hence we
consider

3

2
·
√

πn

m

as the number of iterations for solving the ECDLP with 99% probability in this case.
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Fig. 4. Distribution of the frequencies of the number of iterations of the rho method for solv-
ing the ECDLP over binary field of 40-bit (1 =

√
πn/2: the expected number of iterations)

4.3 Processing performance of iterations

We here estimate the processing performance of iterations fTA[20] and fGLV by using the
previously known records. Fix an integer number N . For simplicity, let t(f) denote the
processing performance of an iteration function f on an elliptic curve of N -bit.

Prime fields case : The authors in [6] implemented the L-adding walk fTA for solving the
ECDLP on an elliptic curve secp112r1 over prime field of 112-bit. They show from their
implementation that it needs 306.08 cycles per iteration for their software (CPU: Cell SPE
3GHz). Note that they reported that their software actually took 362 cycles per iteration.
There can be a loss in performance if we take so large L that the precomputed points do
not fit in cache. Therefore we assume that we take L so that the precomputed points fit in
cache and t(fTA) is not affected by the size of L. Moreover, since t(fTA) is approximately
equal to the processing performance of a point addition on elliptic curves, we estimate that
t(fTA) is proportional to the value N1.585 due to the Karatsuba method which is one of the
well-known fast multiplication algorithms. From the above arguments, we estimate that we
have

t(fTA[20]) = 306.08 × (N/112)1.585 cycles.

Binary fields case : It is shown in [2] that the processing performance of a point addition of
elliptic curves ECC2-131 and NIST 2-131 over binary field of 131-bit is 1047 cycles (CPU:
Cell SPE 3GHz). As in the case of prime fields, we estimate that we have

t(fTA[20]) = 1047 × (N/131)1.585 cycles.
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Table 5. The estimated cost of each Step in computing g(X) = X + φj(X)

Step 1 Step 2 Step 3 Step 4 Total
Cost∗ 0.22 0.25 1.00 0.15 1.62
∗We consider the cost of a point addition on E in polynomial-
basis as a standard value.

Koblitz curves case : In computing fGLV, the cost of computing g(X) = X + φj(X) is
dominant. In our implementation, we take a point X ∈ E represented by normal-basis as
input, get the index j = hashm(L(X)) by computing m−1 elements φi(X) for i = 1, . . . ,m−1
and take Y = φj(X) in normal-basis (Step 1), transform normal-basis to polynomial-basis
(Step 2), compute X + Y in polynomial-basis (Step 3), transform bases again (Step 4) and
finally output g(X) represented by normal-basis. Note that it needs to map g(X) ∈ E to
[g(X)] ∈ E/ ∼ in computing fGLV, but the cost of this mapping is included in Step 1 of the
next computation of g. In Table 5, we give the cost of each Step from our implementation
(see [47] for details). We estimate from Table 5 that t(fGLV) is 1.62 times of the processing
performance of a point addition on E over binary fields in polynomial-basis. Therefore we
estimate that we have

t(fGLV) = 1.62 × 1047 × (N/131)1.585 cycles.

5 Comparison of the ECDLP and the IFP

In this section, we estimate the computing power required to solve the ECDLP and the IFP,
respectively. Furthermore, we calculate the bit sizes of the ECDLP and the IFP that provide
the same level of security.

5.1 Computing power required to solve the ECDLP

Since the running time of iterations due to the collision detection of distinguished points is
negligible, we see that the running time of the rho method with an iteration function f for
solving the ECDLP of N -bit is approximately equal to

(the number of iterations) × t(f).

Note that the number of iterations (resp. the value t(f)) is discussed in Subsection 4.2 (resp.
4.3). Hence we estimate the computing power T required to solve the ECDLP of N -bit in a
year using the rho method as follows (FLOPS is the unit of T ):

T =





3 ·
√

π2N/2 × 306.08 × (N/112)1.585/Y (prime fields case),

3 ·
√

π2N/2 × 1047 × (N/131)1.585/Y (binary fields case),

3 ·
√

π2N/N/2 × 1.62 × 1047 × (N/131)1.585/Y (Koblitz curves case).

We set Y = 365 · 24 · 60 · 60 (seconds) and n = 2N as the order of the point S. In Table 6,
we give an estimation of the computing power T for each N .
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Table 6. Estimation of the computing power T required to solve the ECDLP of N -bit in a
year by using the rho method (FLOPS is the unit of T )

Prime fields case Binary fields case Koblitz curves case
N log10 T N log10 T N log10 T
86 8.17 84 8.28 88 8.15
107 11.49 105 11.60 110 11.57
115 12.74 112 12.70 117 12.65
123 13.99 120 13.95 125 13.89
138 16.33 136 16.44 141 16.35
154 18.81 151 18.77 157 18.81
176 22.21 173 22.18 179 22.19
207 26.99 205 27.11 211 27.08
247 33.13 245 33.25 251 33.18

05
1015
2025
3035
40

64 80 96 110 126 142 158 174 190 206 222 238 254

Binary fieldsKoblitz curves

Computing power required to solve the 

ECDLP in a year (FLOPS)

Bit size of the ECDLP

Prime fields 

Remark 2. In [5], Bernstein et al. measured the computing power to break the Certicom
ECC2K-130 challenge based on their extensive experiments. This challenge is to solve the
ECDLP on a Koblitz curve E over F2131 with ]E(F2m) = 4n and n ≈ 2129. They showed
that this challenge would be solved in two years on average using 534 GPUs (1.242 GHz
NVIDIA GTX 295, 60 core). On the other hand, we extrapolate by our estimation formula
that it needs 1014.516 FLOPS (≈ 4267 GPUs) to solve the ECDLP of 129-bit in a year with
99% probability. Since the difference is mainly due to the conditions of the solving period (2
years vs 1 year) and the success probability of the rho method (50% vs 99%), our estimation
is not so far from their experimental data.

5.2 The computing power required to solve the IFP

We first discuss the complexity of the GNFS to estimate the computing power required to
solve the IFP. The GNFS consists of four steps, namely, the polynomial selection step, the
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sieving or the relation finding step, the linear algebra step, and the square root step. Among
these four steps, the sieving step is dominant procedure theoretically and experimentally.
Heuristically, the complexity of the GNFS for factoring a composite integer N is given by

LN

(
1

3
,

3

√
64

9

)
as N → ∞ (2)

where

LN(s, c) = exp((c + o(1))(log N)s(log log N)1−s).

According to [27, 35], the above complexity can be obtained by the following way:
For two positive integers x and z, let Φ(x, z) denote the probability that an arbitrary

integer in the range [1, x] is z-smooth. Note that a positive integer is called z-smooth if none
of its prime factors is greater than z. It follows from [9] that we have

Φ(x, z) = (logz x)(−1+o(1)) logz x as x → ∞.

By using the estimation of Φ(x, z), we see that the probability that a positive integer at most
Lx(ν, λ) is Lx(ω, µ)-smooth is Lx(ν − ω, −(ν − ω)λ/µ) as x → ∞. For factoring a composite
integer N , take a polynomial

f(x) = cdx
d + cd−1x

d−1 + · · · + c0

of degree d and an integer M such that f(M) ≡ 0 mod N and M ≈ N1/(d+1). Note that the
degree d is determined by d = λ−1(log N/ log log N)1/3 and the most suitable value of λ will
be determined in the next paragraph. Fix a root θ of f(x) = 0 and let K = Q(θ) denote the
number field generated by θ. For a relation (a, b), the absolute value of an algebraic norm

cdNK/Q(a + bθ) = (−b)df(−a/b)

= cda
d + cd−1a

d−1(−b) + · · · + c0(−b)d

is about N1/(d+1) · max(a, b)d. Take LN(1/3, 2λ2) as both the upper bound of the factor base
and the sieving area of the relations (a, b).

The size of the algebraic norm cdNK/Q(a + bθ) is approximately equal to

LN(1/3, 2λ2)d · N1/(d+1) = exp(2λ(log N)2/3(log log N)1/3) · exp(λ(log N)2/3(log log N)1/3)

= LN(2/3, 3λ)

and the size of M = N1/(d+1) is approximately equal to

N1/(d+1) = exp(λ(log N)2/3(log log N)1/3) = LN(2/3, λ).

Then we have the probability that both the above numbers become B-smooth is

LN(1/3,−3(1/3)/(2λ)) · LN(1/3,−(1/3)/(2λ)) = LN(1/3,−2/(3λ))
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Fig. 5. Experimental result on the o(1)-value of Φ(x, z)

Since the number of relations should be more than that of the factor bases, we have

LN(1/3, −2/(3λ)) · LN(1/3, 2λ2)2 ≥ LN(1/3, 2λ2).

We then have λ3 ≥ 1/3, which shows that 3
√

1/3 is the most suitable value of λ. Set λ =
3
√

1/3. Since we need more smooth relations than there are elements in the factor base, the
complexity of the GNFS is as follows:

](the factor base)/(probability of the smoothness) = LN(1/3, 2λ2 + (2/3)/λ)

≥ LN(1/3, (64/9)1/3).

The complexity of the GNFS includes an error value o(1) which is mainly due to the o(1)-
value of Φ(x, z). In Figure 5, we give our experimental result on the o(1)-value of Φ(x, z)
where x is at most 30-bit. From Figure 5, we expect that the o(1)-value is included in the
range [0, 0.2] as x → ∞. Since the function Φ(x, z) is used twice for deriving the complexity
of the GNFS, we expect that the error value of the complexity of the GNFS is included in
the range [0, 0.4].

The unit of the GNFS complexity is an average cost for checking the smoothness of one
element in the sieving area. Practically, such cost depend on various manner, coordinate
transformation to special-q lattice, addition of log p to memory, trial division and pseudo-
prime test, cofactorization, etc. Since it seems too complex to evaluate the cost theoretically,
we derive the cost from the experimental results of CRYPTREC report 2006. It is shown in
CRYPTREC Report 2006 [10, Table 2. 4 and Figure 2.1] that the computing power required
to solve the IFP of an integer of each size of RSA is estimated by investigating the computing
power of the sieving step based on experiments. Moreover, CRYPTREC Report 2006 [10,
Figure 2.2] gives the expected computing power required to solve the IFP of an integer of each
size of IFS in a year, which we show in Table 7. We can see that the value of the complexity
of the GNFS is very close to each data of Table 8 if we set o(1) = 0.348172 ∈ [0, 0.4] as the
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Table 7. Estimation of factoring [10, 22, 23]

N (c, d) #{special-q} sec/(special-q) clock/(add. log p) estimation(PC year) memory
1024 216, 215 1.95 · 1012 135.0 276.60 8.4 · 106 2GByte
1536 216, 215 71.9 · 1016 207.8 425.76 4.6 · 1012 2GByte
2048 216, 215 315 · 1020 245.0 501.98 25 · 1016 2GByte

(PC : 2.2 GHz Athlon64 dual core CPU)

Table 8. The expected computing power T required to solve the IFP of N -bit in a year by
CRYPTREC report 2006 [10] (FLOPS is the unit of T )

N 768 1024 1536 2048
log10 T 12.6879 16.3395 22.2319 27.0413

error value of the complexity of the GNFS and ` = 1.0373 × 107 as the leading coefficient of
LN . In Table 9, we give the estimation of the computing power required to solve the IFP in
a year.

5.3 ECDLP vs IFP

In our estimation, we make the following assumptions:

– ECDLP side:
• The complexity of the iteration function scales proportionally to Nα, where N is the

bit length and α is a constant determined by the multiplication method. Figures in
Table 6 and 10 are obtained when we use Karatsuba method for multiplications, i.e.
α = 1.585. If we use ordinary multiplication, figures of the ECDLP bit length in Table
6 and 10 can be reduced at most two bits.

• The memory requirement of the rho method can be controlled by using the distin-
guishing points. Therefore the memory requirement of the rho method is negligible.

– IFP side:
• The complexity of the GNFS is given by the formula (2). Using latest experimental

data, we calculated o(1) = 0.348172 and ` = 1.0373 × 107. We assume that these
values apply for larger integers.

• We note that the memory requirements of the GNFS against the numbers with the
target bit length in Table 7 are the same size (2G Bytes). In [22], there is another
estimation of the GNFS of 1536 bits by using 3.5G Byte memory, they estimated its
complexity can be reduced from 4.6 · 1012 to 4.2 · 1012. Generally speaking, unlimited
memory size for executing the GNFS would reduce the computational complexity.
The strict evaluation of such effect is our future work.

We then calculate the bit sizes of the ECDLP and the IFP that provide the same level of
security. In Table 10, we give an estimation of the strength comparison of the ECDLP and
the IFP. In particular, we have the followings from Table 10:

– The security of 768-bit IFP is close to that of 115-bit ECDLP over prime field, 112-bit
ECDLP over binary field, or 117-bit ECDLP on Koblitz curves. The world records of
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Table 9. The estimation of the computing power T required to solve the IFP of N -bit in a
year using GNFS from CRYPTREC Report 2006 [10] (FLOPS is the unit of T )

N log10 T
512 8.21
696 11.53
768 12.68
851 13.94
1024 16.33
1219 18.75
1536 22.23
2048 27.04
2839 33.20

768 1024 1536 2048
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2011 for solving the RSA and ECC are 768-bit RSA in 2010 [24] and 112-bit ECC over
prime field in 2009 [15], respectively. Since the times of these two records are close, we
consider that these records indicate reasonability of our estimation.

– The security of 1024-bit IFP is close to that of 138-bit ECDLP over prime field, 136-bit
ECDLP over binary field, or 141-bit ECDLP on Koblitz curves. Though it is often said
that 160-bit ECC corresponds to 1024-bit RSA, our estimation indicates that shorter
ECC key sizes provide the same level of security.

6 Conclusions

In this paper, we evaluated the complexity of the rho method for solving the ECDLP based
on state-of-the-art theory and experiments, and estimated the computing power required to
solve the ECDLP in a year (see Table 6). We also estimated the computing power required
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Table 10. Estimation of the bit sizes of the ECDLP and the IFP providing the same level
security by comparing Table 6 and 9

Bit size of Bit size of the ECDLP
the IFP Prime fields Binary fields Koblitz curves

512 86 84 88
696 107 105 110
768 115 112 117
851 123 120 125
1024 138 136 141
1219 154 151 157
1536 176 173 179
2048 207 205 211
2839 247 245 251

to solve the IFP based on results of CRYPTREC Report 2006 (see Table 9), and gave an
estimation of the strength comparison of the ECDLP and the IFP (see Table 10). If we say
160-bit ECC has 80-bit security because the complexity of the rho method is square root,
our estimation indicates that 1024-bit RSA does not reach the 80-bit security.
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Abstract. A parallel hardware implementation of the Pollard rho algo-
rithm is a complex design requiring multiple layers of design hierarchy.
In this contribution, we investigate an ECDLP design for a secp112r1
curve and we discuss the design difficulties of a traditional hardware de-
sign method based on Verilog. The lack of flexible control structures,
and the bottom-up style of hardware design leads to a rigid architecture,
incapable of supporting quick architecture changes and design space ex-
ploration. We then present the same ECDLP implementation using Blue-
spec, a rule-based hardware description language. The language features
of Bluespec support effective design space exploration. We demonstrate
this by comparing several secp112r1 ECDLP variants, with non-trivial
modification of parameters. We investigate the speed area tradeoff re-
sulting from various design parameters and demonstrate performance
from 53K to 2.87M iterations per second for Xilinx FPGA slice counts
varying from 4,407 to 35,232 slices. We emphasize that these numbers
were obtained by measuring the performance of a prototype, rather than
estimating them from synthesis tool output. We conclude that the de-
sign of complex cryptanalytic hardware can greatly benefit from better
hardware design methodologies, and we would like to advocate the im-
portance of this aspect.

1 Introduction

Elliptic curve cryptography (ECC) has become a popular choice for public key
cryptography implementations due to its smaller key sizes relative to RSA. The
security of ECC is due to the difficulty of solving the elliptic curve discrete
logarithm problem (ECDLP). Therefore, previous work has been devoted to de-
termining the security of ECC by attempting to solve ECDLP for various key
sizes. The parallelized Pollard’s Rho method, introduced by van Oorschot and
Wiener [14], is the best known algorithm to solve ECDLP. So far, Pollard’s Rho
method has been implemented on a variety of accelerator platforms including
FPGAs, Playstation 3 Cell processors, and GPUs. It’s the purpose of this contri-
bution to examine the limitations of hardware design with Verilog and investigate
a design methodology using Bluespec, a more recent proposal.

A quick literature review shows that custom architectures in hardware out-
perform software implementations, due to the computational parallelism offered
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by hardware. Table 1 gives an overview of published ECDLP implementations
for various curves. Of all proposed systems, Fan’s hardware implementation of
an attack on ECC2k-130 [8] achieves top performance. Other hardware designs
including [1] and [7] claim strong performance relative to competing platforms.
In [8], Fan presents a hardware system to solve ECDLP for ECC2k-130 with
computation speed of 111M point additions per second per core using Xilinx
Spartan-3 FPGAs. This outperforms an attack on the same curve using GPUs
that achieves 63M point additions per second [2] and one using Cell CPUs that
computes 4.28M point additions per second [4]. These results demonstrate that
existing programmable hardware platforms are capable of achieving top perfor-
mance.

Table 1. Summary of prior ECDLP systems

Platform Curve Publication Point Additions
Year per Second

Spartan-3 FPGA [8] ECC2k-130 2010 111M
130 bit, binary field

Nvidia GTX 295 GPU [2] ECC2k-130 2010 63M
130 bit, binary field

Spartan-3E FPGA [1] ECC2k-130 2009 33.67M
130 bit, binary field

Cell Processor [1] ECC2k-130 2009 27M
130 bit, binary field

Nvidia GTZ295 GPU [1] ECC2k-130 2009 12.56M
130 bit, binary field

Spartan-3E FPGA [7] ECC2-131 2007 10.0M
131 bits, binary field

Cell Processor [3] secp112r1 2010 8.8M
112 bit, prime field

Cell Processor [5] secp112r1 2009 7M
112 bit, prime field

Cell Processor [4] ECC2k-130 2010 4.3M
130 bit, binary field

Virtex 5 FPGA [11] secp112r1 2011 660K
112 bit, prime field

Spartan-3 FPGA [10] 128 bit, prime field 2007 57.8K

However, many of the advanced optimizations used in software are not found
in hardware implementations. These optimizations, such as negation maps [3]
and tag tracing [6], use complex decision making or complex data structures,
features that are difficult to support in classic hardware design. Indeed, the
standard hardware design process uses hardware description languages (HDLs)
to describe behavior at the register transfer level (RTL). The low abstraction
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level of HDLs increases the design cost of hardware systems well beyond that of
functionally equivalent software systems.

– In HDLs, a design is expressed as a hierarchy of modules and designers must
explicitly manage the interactions between modules. The interface of a mod-
ule is defined in structural terms, through ports that carry input signals or
output signals. Typical module interactions (synchronization, data transfers,
and so on) must be expressed in terms of signal transitions on module ports.
All these elements encourage a designer to focus on low-level details at the
expense of developing the big picture. A designer thinks of design with mod-
ules as a bottom-up design process: low-level modules must be completed
before proceeding to higher levels.

– HDLs require that control be expressed explicitly. Designers must manually
define required control logic using finite state machines. In large systems re-
quiring complex control structures, expressing the control explicitly greatly
increases design time. By themselves, finite state machines do not support
control hierarchy. This makes hierarchical control concepts, such as subrou-
tines and exceptions, particularly difficult to express using HDLs. Manual
design of complex controllers with techniques such as microprogramming,
tends to be rigid, with poor support for architectural exploration. Hence,
the design of large highly optimized hardware systems is a labor intensive
process that is difficult to adapt for reuse or experimentation.

A low abstraction level is not always a disadvantage; a software programmer
naturally switches from C to assembly when performance is a concern. But
a hardware designer using HDL has no choice: everything is designed at low
abstraction level. Low abstraction level also becomes a concern when a designer
is working through the initial stages of a design: analyzing the design problem,
refining the specification, understanding the implementation cost. Indeed, design
space exploration is essential to master large, complicated designs, including
cryptanalytic systems. The most successful cryptanalytic systems are those that
can be easily adapted for such experimentation. Unfortunately, the bottom up
design flow and explicit control definition required by HDLs mean that even
minor changes to a hardware architecture may require time consuming design
changes and logic verification. As a result, these explorations are often skipped,
leaving a possible suboptimal design.

In this paper, we investigate, in the context of an ECDLP design, how chang-
ing the hardware description language can improve the design process. We use
Bluespec and show how this language overcomes the pitfalls of traditional HDLs.
We demonstrate design space exploration using Bluespec by presenting several
alternative implementations of a secp112r1 ECDLP engine, with variations in
ECDLP batch vector size and number of point addition modules. We did not yet
evaluate more advanced Pollard rho optimizations, such as negation maps and
tag lists; we defined this as future work. However, we think our current results
already provide credible evidence that higher abstraction level will greatly help
the hardware design of this problem.
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The remainder of this paper is structured as follows. In the next section,
we give a brief overview of the Bluespec System Verilog language and Bluespec
design flow. In Section 3, we give a high-level specification of the modular mul-
tiplier required for the ECDLP system and we explain the design of a modular
multiplier for secp112r1 using Bluespec in Section 4. We discuss the complete
system architecture and Bluespec implementation in Section 5. We give the im-
plementation results of our design space exploration in Section 6 and finally
conclude the paper.

2 Bluespec

Bluespec [13] is an electronic system level (ESL) hardware synthesis toolset
that claims faster and more accurate hardware design at a higher abstraction
level than HDLs. Bluespec is centered on the Bluespec System Verilog (BSV)
hardware programming language. BSV introduces several unique programming
constructs to raise the abstraction level of the hardware design process without
sacrificing the designer’s control over system microarchitecture or resource us-
age. In addition to BSV, Bluespec provides a compiler and simulator to allow
generation of fully synthesizable Verilog and cycle-accurate simulation of BSV
designs.

2.1 Modules and Interfaces

Bluespec designs use a module hierarchy similar to that of HDL designs, but they
are constructed differently. Each module includes a datapath, behavior, and an
interface. The datapath consists of instantiations of lower level components used
in the module such as wires, registers, and user-defined modules. The behavior
of a module is defined using rules and methods to control data manipulation by
datapath elements. The interface encapsulates the input and output behavior of
the module by means of methods. Two key elements of Bluespec not found in
classic HDL are rules and interface methods.

Interface methods define all input and output operations that can be per-
formed by the module. Methods are classified into three types: Action methods
that cause state changes, Value methods that return data values, and ActionVa-
lue methods that both cause state changes and return data. Action and Action-
Value methods accept zero or more arguments as inputs to the module, while
Value and ActionValue methods return a value as module output. The Blue-
spec compiler determines the implicit execution conditions for each method and
adds the appropriate control signals to the design to enforce these conditions.
This allows designers to ensure correct behavior without explicitly defining the
handshaking logic required to synthesize that behavior in hardware.

Listing 1.1 is an example of a simple 18x16 single cycle multiplier in BSV.
The multiplier interface includes two methods; load, which provides the input
operands and result, which returns the product. The interface methods are de-
fined within the multiplier module as shown. Operand multiplication is per-
formed immediately during a load. The result is stored in the product register
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and returned by the result method. Note that, by means of appending a zero-
bit at the most-significant-bit, we ensure an unsigned multiplier. Since this is a
single cycle design, no additional control is required to define the module behav-
ior. The pragmas synthesize and always ready control mapping of the Bluespec
design into Verilog. The synthesize pragma directs the compiler to generate a
separate Verilog module, rather than inlining instantiations of the BSV module.
The always ready pragma prevents generation of a ready signal for the specified
interface methods.

Listing 1.1. Single cycle 18x16 multiplier

interface M u l t i p l i e r ;
method Action load ( Bit #(18) f , Bit #(16) g ) ;
method Bit #(34) r e s u l t ( ) ;

endinterface

(∗ s y n t h e s i z e ∗)
(∗ always ready = ” load , r e s u l t ” ∗)
module mkMult ip l ier ( M u l t i p l i e r ) ;

Reg#(Bit #(34) ) product <− mkReg(0 ) ;

method Action load ( Bit #(18) f , Bit #(16) g ) ;
product <= {0 , f } ∗ {0 , g } ;

endmethod

method Bit #(34) r e s u l t ( ) ;
return product ;

endmethod
endmodule

2.2 Control

Behavior of Bluespec modules is expressed using rules. A rule consists of one or
more actions guarded by a Boolean condition. Each rule is executed atomically,
which guarantees that all actions in the rule either execute simultaneously in
parallel or do not execute. An advantage of atomicity is that each rule can be
evaluated individually at any given point in time to determine how the state
of the module is impacted. Designers can define each rule individually without
explicitly specifying the relationships between rules in the module. Designers
must ensure that all actions required to execute in the same cycle are included
in a single rule and that no rule contains conflicting actions. As long as these
conditions are satisfied, the Bluespec compiler will determine a schedule of rule
execution that preserves the functional behavior of the design. The compiler also
prevents conflicting rules from firing at the same time; the order of execution
for conflicting rules can be manually specified by the designer or automatically
assigned by the compiler based on overall schedule requirements of the design.

In HDLs, it is common practice to use a ready signal to indicate comple-
tion of a multicycle operation. BSV provides the specialized Maybe datatype to
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encapsulate a ready signal and result value into a single type. Rather than main-
taining the control as a separate signal from the data, designers can assign both
simultaneously by either tagging the Maybe-typed variable invalid or assigning a
data value. To facilitate the use of the Maybe type, the Bluespec library includes
methods to read data from and check the validity of Maybe-typed variables.

2.3 Example: Multicycle Multiplier

Listing 1.2 extends the earlier multiplier example to illustrate the use of rules
and Maybe datatype in BSV for a multicycle 18x16 multiplier. This multiplier
represents each operand as a set of coefficients and computes the product in
three clock cycles using conventional schoolbook multiplication. The interface of
the multicycle multiplier returns the product as a Maybe type.

The multiplication requires two stages of 9x8 multiplication and two stages
of partial product accumulation and alignment. A state register, mult state, is
used to track the current stage of the computation and each rule is guarded by a
condition that allows it to execute only during the proper stage. The load stage is
specified within the load method definition and stores each operand in a register
for use during computation. The multiplication stages are controlled by rules
mult st1 and mult st2 in Listing 1.2. The first partial product accumulation
stage executes in the same clock cycle as the second multiplication stage and
aligns the four partial product into the upper and lower halves of the 34-bit
product. This stage is implemented by the rule do acc. Result assignment stage
tags the Maybe-typed product as valid and assigns the 34-bit result by aligning
its previously computed halves and adding the carry bit from the lower half to
the upper half.

The invalid product rule tags the product as invalid. Since both assign res
and invalid product drive product, the rules are in conflict whenever both are
able to fire, specifically when mult state equals three. The functionally correct
behavior is for assign res, rather than invalid product, to fire when mult state is
three. This is enforced by manually assigning higher priority to the assign res
rule using the syntax (* descending urgency = ”assign res, invalid product” *).

Listing 1.2. Multicycle 18x16 multiplier

interface M ul t i M u l t i p l i e r ;
method Action load ( Bit #(18) f , Bit #(16) g ) ;
method Maybe#(Bit #(34) ) r e s u l t ( ) ;

endinterface

(∗ s y n t h e s i z e ∗)
module mkMult iMult ip l ier ( Mu l t i Mu l t i p l i e r ) ;

Reg#(Bit #(18) ) f i n <− mkReg(0 ) ;
Reg#(Bit #(16) ) g i n <− mkReg(0 ) ;
Reg#(Bit #(17) ) r0 <− mkReg(0 ) ;
Reg#(Bit #(17) ) r2 <− mkReg(0 ) ;
Reg#(Bit #(18) ) acc1 <− mkReg(0 ) ;
Reg#(Bit #(17) ) acc2 <− mkReg(0 ) ;
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Wire#(Bit #(17) ) r1 <− mkWire ;
Wire#(Bit #(17) ) r3 <− mkWire ;
Reg#(Maybe#(Bit #(34) ) ) product <− mkWire ;
Reg#(Bit #(2) ) mu l t s ta t e <− mkReg(0 ) ;

(∗ descending urgency = ” a s s i g n r e s , i n v a l i d r e s ” ∗)
rule mult s t1 ( mu l t s ta t e == 1) ;

r0 <= {0 , f i n [ 8 : 0 ] } ∗ {0 , g i n [ 7 : 0 ] } ;
r2 <= {0 , f i n [ 8 : 0 ] } ∗ {0 , g i n [ 1 5 : 8 ] } ;

endrule

rule mult s t2 ( mu l t s ta t e == 2) ;
r1 <= {0 , f i n [ 1 7 : 9 ] } ∗ {0 , g i n [ 7 : 0 ] } ;
r3 <= {0 , f i n [ 1 7 : 9 ] } ∗ {0 , g i n [ 1 5 : 8 ] } ;

endrule

rule do acc ( mu l t s ta t e == 2) ;
acc1 <= {0 , r0 } + ({0 , r2 [ 8 : 0 ] } << 8) + ({0 , r1 [ 7 : 0 ] } << 9) ;
acc2 <= r3 + {0 , r2 [ 1 6 : 9 ] } + {0 , r1 [ 1 6 : 8 ] } ;

endrule

rule a s s i g n r e s ( mu l t s ta t e == 3) ;
product <= tagged Val id ( ({0 , acc2 } << 17) + {0 , acc1 }) ;

endrule

rule i n v a l i d r e s ;
product <= tagged I n v a l i d ;

endrule

rule s t a t e c t r l ( mu l t s ta t e != 0) ;
mu l t s ta t e <= mul t s ta t e + 1 ;

endrule

method Action load ( Bit #(18) f , Bit #(16) g ) ;
f i n <= f ;
g i n <= g ;
mu l t s ta t e <= 1 ;

endmethod

method Maybe#(Bit #(34) ) r e s u l t ( ) ;
return product ;

endmethod
endmodule

With only minor modifications, the multicycle 18x16 multiplier shown in
Listing 1.2 can be adapted to support pipelining. A pipelined multiplier would
use the same interface and computation stages as the multicycle multiplier. To
support pipelining, intermediate results can be represented as Maybe types and
their validity can replace the state variable in rule firing conditions. Additionally,
r1 and r3 must change from wires to registers.
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3 Modular Multiplication

We have used Bluespec to design a parallel Pollard’s rho engine for secp112r1.

This curve uses a prime field GF ( (2128−3)
76439 ). We modeled our arithmetic using

a redundant 128-bit representation, following ideas from Bernstein et al. in [3]
and Bos et al. in [5]. We also applied ideas from Güeneysu in [9] to obtain a
parallel implementation of the multiplication. Finally, we optimized the resulting
structure by tightly integrating reduction and multiplication, by making use
of the properties of the unbalanced modulus (2128 − 3). Our design has been
presented in [11], but for completeness we recall its key characteristics.

We represent the integers in secp112r1 redundantly, in the ring R = Z/qZ,
where q = p ∗ 76439. This allows us to perform arithmetic modulo q = 2128 − 3

instead of modulo p = (2128−3)
76439 . This transformation simplifies the reduction

operation as follows.

Since q = 2128−3 is an unbalanced exponent, a reduction becomes a constant-
multiplication and an addition. Indeed, assume A = A1.2

128 + A0, then A mod
(2128 − 3) = A0 + 3.A1 mod (2128 − 3). Furthermore, a redundantly represented
integer mod q can be converted into a canonical form by multiplying it with
a = 76439. If a | q and p = q/a, then v mod p ≡ v.a mod q. Therefore, if we
start from elements in GF (p), and perform computations with them in R, we
can obtain a unique representation of them by multiplying the result in R with
a = 76439.

We represent a 128-bit number as 8 fields of 16 bit each. To multiply two
such numbers F and G, one needs to compute 64 partial products. Our design
computes 8 partial products in parallel by multiplying one field of operand G
with all fields from operand F . As proposed by Güeneysu [9], placing G in a
shift register and F in a rotating register ensures that each multiplier produces
aligned results, that can be directly accumulated. We also integrated reduction
into the multiplication as follows. When rotating the most significant field from
F into the least significant field, we multiply it with 3, thereby obtaining a
reduction for (2128 − 3).

Fig. 1 shows the block diagram of the modular multiplier. The top of the
figure shows the two registers F and G, which are connected to an array of 8
multipliers. Each multiplier is 16-bit by 18-bit, and is able to generate partial
products of the form Fi∗Gj and 3.Fi∗Gj . The output of the multipliers therefore
is 34 bit.

The partial products are accumulated with a layer of 21-bit and 19-bit accu-
mulators. Each accumulator combines two inputs: a 16-bit input from the least-
significant part of a multiplier output with the 18-bit most-significant bits of the
next-lower multiplier output. The most-significant 18-bit of the most-significant
field is reduced, and accumulated at the least significant field.

After accumulation, we obtain a product of overlapping 21-bit and 19-bit
fields. These fields are then merged into a representation of non-overlapping 16-
bit fields by means of carry propagation. Again, carries at the most-significant
side are converted into reduced carries that are added at the least significant
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Fig. 1. Block diagram of modular multiplier architecture

side. The carries need to be propagated until the final result R is stable. Through
simulation, we experimentally verified that this happens after no more then 14
clock cycles for the worst possible F and G inputs. Compared to a modular
multiplier with separate multiplication and reduction, our proposed structure is
more compact, and results in a shorter latency. Indeed, a full-multiplication and
full-reduction structure would use 20 clock cycles (8 for multiplication, 12 for
reduction) as opposed to 14 clock cycles for the merged structure.

In the following section, we will describe the mapping of this design in Blue-
spec code, and subsequently in FPGA.

4 Designing Modular Multiplier in Bluespec

We use Bluespec to complete a hardware implementation of the modular mul-
tiplier for secp112r1 as an example of the concepts and design methodologies
that can be used in Bluespec designs. The complete code listing for the modular
multiplier is included as Appendix A.

4.1 Design Hierarchy

The hierarchy of the Bluespec design is based on the block diagram in Fig. 1. Low
level components required by the modular multiplier are multipliers, accumula-
tors, and adders. Each component receives two input operands and produces a
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result after one clock cycle. In BSV, the input operands are provided via an Ac-
tion method that accepts two arguments and the output is returned via a Value
method. Since the result is computed in one clock cycle, no rules or explicit
control is required. The low level multipliers and accumulators make use of the
high-speed DSP48 blocks in the Virtex-5 FPGA to complete the multiplications
and partial product accumulations in a single clock cycle.

4.2 Interface

The interface of the modular multiplier is fairly straightforward; the multiplier
receives two 128-bit operand inputs and produces a 128-bit output 14 clock
cycles later. The value returned by the result method uses the Maybe datatype.
Since modular multiplication is a multiple clock cycle operation, the Maybe-
typed return value can only be read when the result is valid, 14 clock cycles
after the operands are received.

4.3 Control

Control logic for the modular multiplication is implemented using rules. The
atomicity of BSV rules allows design of rules for each computation stage inde-
pendently, relying on the Bluespec compiler to handle scheduling of and inter-
actions between rules. Computation of the modular multiplication is controlled
by rules do mult, wrap, do acc, and do carry (lines 47 - 86). These rules load the
low level components to perform multiplication, accumulation, and reduction of
partial products. None of these rules uses Boolean conditions to guard execution;
they execute every clock cycle without any concept of control state.

The validity of the Maybe-typed result is controlled using an enabled counter
that assigns the output value as valid after 14 clock cycles. The rule incr counter
(lines 90 - 92) controls the cycle counter. The cycle count is incremented every
clock cycle until it reaches 15. During the fourteenth clock cycle, the output
is tagged valid and assigned the concatenated value of the fully reduced 16-bit
coefficients by rule assign res (lines 94 - 100).

The Bluespec compiler derives an execution schedule for all rules in the mod-
ule based on explicit and implicit conditions of each. The explicit conditions are
the Boolean conditions used to guard rule execution. Implicit rule conditions
are derived by the Bluespec compiler based on the handshaking conditions and
logic required implement interface methods. For example, rule do mult does not
have any explicit condition, but it both reads and writes operand registers f in
and g in. The load method also writes to f in and g in, storing the input argu-
ments as the operands. This produces an implicit condition on do mult. Implicit
conditions can prevent a rule from executing in the same cycle as another rule
or method. In general, the Bluespec compiler always assigns higher priority to
interface methods than module rules, so rules that conflict with a method will
not execute when the method is called, regardless of the explicit rule condition.
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5 Microcoded ECDLP Architecture

Using Bluespec, we have implemented a full system to attack secp112r1. We
exploit the high abstraction level supported for Bluespec designs to implement a
robust system that is easily adaptable to the architectural changes required to ex-
plore the design space. Our system includes a complete point addition datapath
that can be parallelized to perform multiple point addition steps simultaneously.
Each point addition unit supports vectorized inversion with a variable vector size.
Bluespec allows us to work at a higher abstraction level to implement our design
directly from a natural language interpretation of the specification. The system is
designed to work in conjunction with a software driver that provides seed points
and performs collision search on distinguished points. The complete code listing
for the ECDLP system is located at https://sourceforge.net/p/ecdlpbluespec/.

5.1 Hardware Implementation

Our hardware design is a Bluespec adaptation of the design presented in [11],
which is a hardware implementation of [3]. A block diagram of this design is
shown in Fig. 2. The design consists of a point addition datapath and microcoded
point addition controller. The point addition datapath uses high performance
modular arithmetic units for multiplication, addition, subtraction, and inversion
mapped onto high-speed DSP48 blocks in the FPGA. The microcoded controller
sends control signals to datapath components to implement the sequence of
operations required for point addition. The controller supports multiple parallel
point addition datapaths executing in SIMD fashion.

Point Addition Datapath

Add/Sub
Vector 
Invert

Multiply

Register File Storage

Distinguished 
Point

Seed Point

Vector Index

Operation

Distinguished 
Point Check

To
 IO

 C
o

n
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Fig. 2. Block diagram of microcoded ECDLP architecture
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5.2 Vectorization

As in [11], we use Mongomery’s trick [12] to reduce the cost of inversion. The
vectorized point addition datapath computes each operation of the point addition
on a vector of points, rather than a single point. The cost of vectorized inversion
is shared by all vector elements, whereas other vectorized operations incur a cost
equal to the non-vectorized cost times the number of elements. Control signals
for the vectorized datapath are generated by the microcoded controller. The
controller iterates through all vectors for a given operation before proceeding to
the next operation.

We implement the vectorized datapath using register files provided in the
Bluespec library to store starting points and temporary results for the point
addition. The number of entries in each register file is equal to the vector size.
Adjustment of this parameter is supported by the RegFile Bluespec library mod-
ule. Since all control logic is specified using rules, vector size can be modified
without any changes to the control.

5.3 Microcoded Controller in Bluespec

Our implementation is functionally equivalent to a conventional HDL microcoded
controller, except that we use Bluespec rules to implement the point addition
controller at a higher abstraction level. Each microinstruction is encoded onto a
single Bluespec rule. The rule condition maintains the order of operations and
rule actions provide control signals to the point addition datapath. An internal
program counter is used to control iteration through vector elements and the
order of the field operation of a point addition.

Interface The controller interface allows loading seed points and returning
distinguished points. The interface, shown in Listing 1.3, provides methods to
indicate when a seed point needs to be loaded or a distinguished point has been
found. These signals are monitored by an IO module that manages communica-
tion with the software driver. In order to avoid stalling or missing points while
waiting to send a distinguished point, the controller stores distinguished points
in a FIFO. When the IO module reads a distinguished point, the first point is
returned and removed from the FIFO. The FIFO is implemented from the Blue-
spec library and its size can be easily adjusted to accommodate the number of
parallel point additions performed by the system.

Listing 1.3. Interface for microcoded controller

interface Pact r l ;
method Action loadSeed ( Bit #(256) seedpt ) ;
method Action waitForSeed ( ) ;
method Action r e s e t ( ) ;
method Action deqDpSp ( ) ;
method Bit #(512) retDpSp ( ) ;
method Bool loadRq ( ) ;
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method Bool dpSendRq ( ) ;
endinterface

Control Our approach to vectorization and microoperation control requires
one rule to implement each field operation of point addition. As an example, the
rule for the first field operation of a point addition is given in Listing 1.4. For
all operations, the rule condition ensures that the rule only executes when the
program counter equals the appropriate operation and the previous datapath
operation is complete, as indicated by the fire cond signal. The actions within
the rule assert control signals for the point addition datapath to perform the
operation. The arguments of loadAddSub in Listing 1.4 are control signals add/-
subtract operation select, operand 1 index, operand 2 index, register file write
enable, and vector element index, respectively. Other field operations provide
similar control signals. As shown, the controller is configured to support four
parallel point addition datapaths. The number of parallel point addition units
can be easily modified by instantiating additional datapaths and adding actions
to the microoperation rules to assert required control signals.

Listing 1.4. Microcoded control for field operations of a point addition

//Counter to i t e r a t e through vec to r e lement i d s
rule v e c c n t c t r l ( incrCond ) ;

vecCnt <= vecCnt + 1 ;
endrule

// Set cond i t i on to increment v ec t o r counter
rule i n c r c o n d c t r l ;

case ( oper ) matches
0 : incrCond <= ( ! ldRqFlg | | seedAva i l n ) ;
1 : incrCond <= addSubResVal ;
2 : incrCond <= addSubResVal ;
3 : incrCond <= ( invResVal | | vecCnt < 7) ;
4 : incrCond <= addSubResVal ;
5 : incrCond <= multResVal ;
6 : incrCond <= multResVal ;
7 : incrCond <= addSubResVal ;
8 : incrCond <= addSubResVal ;
9 : incrCond <= multResVal ;
10 : incrCond <= addSubResVal ;
11 : incrCond <= chkResVal ;

endcase
endrule

// Reg i s t e r increment cond i t i on wire
rule f i r e c o n d c t r l ;

f i r e c o n d <= incrCond ;
endrule

// 1 : t1 = Py − Qy
rule o p 1 c t r l ( oper == 4 ’ d1 && f i r e c o n d ) ;
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pa0 . loadAddSub (0 , 5 , 7 , 1 , vecCnt ) ;
pa1 . loadAddSub (0 , 5 , 7 , 1 , vecCnt ) ;
pa2 . loadAddSub (0 , 5 , 7 , 1 , vecCnt ) ;
pa3 . loadAddSub (0 , 5 , 7 , 1 , vecCnt ) ;

endrule

Internal state management for the microcoded controller uses additional rules
to handle iteration through vector elements and incrementation of the opera-
tion counter. Vector iteration is controlled using a simple counter that incre-
ments whenever the previous datapath operation is complete, as shown in rule
vec cnt ctrl from Listing 1.4. After control signals for the current operation have
been asserted for all vector elements, the operation counter increments and pro-
ceeds to the next operation. Operation and vector iteration control rely heavily
on the use of the Maybe datatype to signal completion of datapath operations.

6 Implementation Results

We demonstrate the suitability of Bluespec for design space exploration in the
context of a complex ECDLP machine for secp112r1. We have implemented our
design for various vector sizes between 1 and 64 with the number of parallel
point addition cores varying between one and four. The high abstraction level
of Bluespec allows us to make these changes easily. The performance results for
each variation are compared and analyzed to determine the optimum parameters
for our ECDLP machine.

For all design variations, our hardware system interacts with a software driver
that provides seed points and performs collision search on distinguished points.
This is implemented using a Nallatech computing platform that includes a quad-
core Xeon processor (E7310, 1.6GHz) and a Virtex-5 (xq5vsx240t) FPGA with
37,440 slices of reconfigurable logic. To demonstrate the correctness of our design,
we use a point of low order (250, specified in [3]), which leads to an expected
collision within only 225 point addition steps.

6.1 Design Variations

We evaluate the impact of vector size and number of point addition cores on
performance and area of our design by implementing both a single-core and four
core version for vector sizes from 1 to 64. Our results are given in Table 2. As
shown, best performance is achieved by the designs with the largest vector size.
Due to the additional storage required for vectorization, the area required to im-
plement each design also increases with the vector size. Therefore, determination
of optimal design parameters must account for the tradeoff between performance
and area.

Comparison of results from the one and four core implementations shows
that increasing the number of cores produces a linear increase in both perfor-
mance and area. This is expected because we implement point addition cores
as parallel instantiations of the point addition datapath. The number of clock
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Table 2. Implementation results for ECDLP with variable vector size and num-
ber of cores.

One Core Four Core

Vector Size Speed Area Speed Area
[PA/s] [slices] [PA/s] [slices]

1 53K 4407 214K 12,391
8 300K 5977 1.20M 17,705
32 598K 6619 2.38M 29,478
64 717K 9692 2.87M 35,232

cycles required for a point addition step remains constant, but the addition of
cores allows that cost to be spread over a larger number of points resulting in
a higher number of point additions per second. In addition, our results show
that for absolute performance, more cores is preferable over a larger vector size.
Consider the four core implementation with vector size 8 and the one core im-
plementation with vector size 32. Both generate 32 points per iteration, but the
four core implementation achieves twice as many point additions per second at
2.5 times the area.

6.2 Speed/Area Tradeoff

Determination of the optimal design parameters for our ECDLP system requires
analysis of the performance and area of each alternative architecture. Our goal
is to find the configuration that will best utilize the limited area of the FPGA to
achieve top performance. Thus, we consider not only the speed of each variation,
but also the area requirements. Our evaluation of the speed/area tradeoff using
the metric point additions per second per slice is shown in Fig. 3. Our design
achieves the best results, 90 point additions per second per slice, for vector size of
32. For larger vector sizes, the extra storage required to increase the vector size
outweighs the performance benefit of larger vectors, resulting in a degradation
of overall performance per unit area. In our system architecture, vectorization is
entirely independent of number of cores. Thus, the optimal design can be realized
by implementing the maximum number of cores, each with vector size 32.

6.3 Comparison with Prior Work

In terms of absolute performance, our design is slower than previous published
solutions. For example, [5] solves ECDLP for secp112r1 using Cell processors
to perform point additions in 453 clock cycles, which yields 7M point additions
per second. [3] improves this solution, computing point additions in 362 cycles
and achieving 8.8M point additions per second. The performance gap between
these prior works and our design is due to the limited clock frequency of the
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Fig. 3. Evaluation of the performance per unit area

hardware design. Our design runs at 100 MHz, while the Cell processors used
by [5] and [3] run at 3.125 GHz. In terms of cycles per point addition, our
design is competitive, with the single core 32 element vector implementation
requiring 167 clock cycles per point addition. Furthermore, using the full area
of the FPGA, we estimate that our design could implement 8 cores with vector
size 32 and compute 4.8M point additions per second.

7 Conclusion

HDL coding is very low-level compared to the complexity handled in a typi-
cal ECDLP architecture. Their bottom-up design flow, and low-level coding of
control does not encourage design-space exploration. We presented our imple-
mentation using Bluespec, a hardware description language that claims higher
abstraction level for hardware design. Several factors, including the separation
of interface from behavior, and the flexible specification of rule-based control,
seem to confirm the suitability of Bluespec for complex design tasks. In ad-
dition, we demonstrated the feasibility of quick design-space exploration for a
Bluespec-based design. Future work includes the evaluation of more complicated
Pollard rho enhancements (such as negation maps, and/or tag lists) using Blue-
spec. Another open question is whether Bluespec is accessible as a parallel design
language to software-oriented designers.
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8 Modmul.bsv : BSV code listing for Modular Multiplier

1 interface ModMul ;
2 method Action load ( Bit #(128) f , Bit #(128)g ) ;
3 method Maybe#(Bit #(128) ) r e s u l t ( ) ;
4 endinterface
5
6 (∗ s y n t h e s i z e ∗)
7 (∗ always ready = ” load ” ∗)
8 module mkModMul(ModMul) ;
9 Reg#(Bit #(144) ) f i n <− mkReg(0) ;

10 Reg#(Bit #(128) ) g i n <− mkReg(0) ;
11 Reg#(Bit #(4) ) rcnt <− mkReg(15) ;
12 Reg#(Bit #(128) ) p r e v r e s <− mkReg(0 ) ;
13 Wire#(Bit #(34) ) wrap around <− mkWire ( ) ;
14 Wire#(Bit #(34) ) carry wrap <− mkWire ( ) ;
15 Wire#(Bit #(34) ) mod f <− mkWire ( ) ;
16 Reg#(Maybe#(Bit #(128) ) ) cout <− mkWire ;
17 M u l t i p l i e r m0 <− mkMult ip l ier ( ) ;
18 M u l t i p l i e r m1 <− mkMult ip l ier ( ) ;
19 M u l t i p l i e r m2 <− mkMult ip l ier ( ) ;
20 M u l t i p l i e r m3 <− mkMult ip l ier ( ) ;
21 M u l t i p l i e r m4 <− mkMult ip l ier ( ) ;
22 M u l t i p l i e r m5 <− mkMult ip l ier ( ) ;
23 M u l t i p l i e r m6 <− mkMult ip l ier ( ) ;
24 M u l t i p l i e r m7 <− mkMult ip l ier ( ) ;
25 Accumulator a0 <− mkAccumulator ( ) ;
26 Accumulator a1 <− mkAccumulator ( ) ;
27 Accumulator a2 <− mkAccumulator ( ) ;
28 Accumulator a3 <− mkAccumulator ( ) ;
29 Accumulator a4 <− mkAccumulator ( ) ;
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30 Accumulator a5 <− mkAccumulator ( ) ;
31 Accumulator a6 <− mkAccumulator ( ) ;
32 Accumulator a7 <− mkAccumulator ( ) ;
33 Adder c0 <− mkAdder ( ) ;
34 Adder c1 <− mkAdder ( ) ;
35 Adder c2 <− mkAdder ( ) ;
36 Adder c3 <− mkAdder ( ) ;
37 Adder c4 <− mkAdder ( ) ;
38 Adder c5 <− mkAdder ( ) ;
39 Adder c6 <− mkAdder ( ) ;
40 Adder c7 <− mkAdder ( ) ;
41
42 rule do mult ;
43 f i n <= { f i n [ 1 2 5 : 0 ] , mod f [ 1 7 : 0 ] } ;
44 g i n <= g i n >> 16 ;
45 m0. load ( f i n [ 1 7 : 0 ] , g i n [ 1 5 : 0 ] ) ;
46 m1. load ( f i n [ 3 5 : 1 8 ] , g i n [ 1 5 : 0 ] ) ;
47 m2. load ( f i n [ 5 3 : 3 6 ] , g i n [ 1 5 : 0 ] ) ;
48 m3. load ( f i n [ 7 1 : 5 4 ] , g i n [ 1 5 : 0 ] ) ;
49 m4. load ( f i n [ 8 9 : 7 2 ] , g i n [ 1 5 : 0 ] ) ;
50 m5. load ( f i n [ 1 0 7 : 9 0 ] , g i n [ 1 5 : 0 ] ) ;
51 m6. load ( f i n [ 1 2 5 : 1 0 8 ] , g i n [ 1 5 : 0 ] ) ;
52 m7. load ( f i n [ 1 4 3 : 1 2 6 ] , g i n [ 1 5 : 0 ] ) ;
53 endrule
54
55 rule wrap ;
56 wrap around <= 3 ∗ {0 , m7. r e s u l t ( ) [ 3 3 : 1 6 ] } ;
57 carry wrap <= 3 ∗ {0 , c7 . r e s u l t ( ) [ 2 1 : 1 6 ] } ;
58 mod f <= 3 ∗ {0 , f i n [ 1 4 3 : 1 2 6 ] } ;
59 endrule
60
61 rule do acc ;
62 a0 . add ( wrap around [ 1 9 : 0 ] , m0. r e s u l t ( ) [ 1 5 : 0 ] ) ;
63 a1 . add ({0 , m0. r e s u l t ( ) [ 3 3 : 1 6 ] } , m1. r e s u l t ( ) [ 1 5 : 0 ] ) ;
64 a2 . add ({0 , m1. r e s u l t ( ) [ 3 3 : 1 6 ] } , m2. r e s u l t ( ) [ 1 5 : 0 ] ) ;
65 a3 . add ({0 , m2. r e s u l t ( ) [ 3 3 : 1 6 ] } , m3. r e s u l t ( ) [ 1 5 : 0 ] ) ;
66 a4 . add ({0 , m3. r e s u l t ( ) [ 3 3 : 1 6 ] } , m4. r e s u l t ( ) [ 1 5 : 0 ] ) ;
67 a5 . add ({0 , m4. r e s u l t ( ) [ 3 3 : 1 6 ] } , m5. r e s u l t ( ) [ 1 5 : 0 ] ) ;
68 a6 . add ({0 , m5. r e s u l t ( ) [ 3 3 : 1 6 ] } , m6. r e s u l t ( ) [ 1 5 : 0 ] ) ;
69 a7 . add ({0 , m6. r e s u l t ( ) [ 3 3 : 1 6 ] } , m7. r e s u l t ( ) [ 1 5 : 0 ] ) ;
70 endrule
71
72 rule do carry ;
73 c0 . add ( a0 . r e s u l t ( ) , carry wrap [ 5 : 0 ] ) ;
74 c1 . add ( a1 . r e s u l t ( ) , c0 . r e s u l t ( ) [ 2 1 : 1 6 ] ) ;
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75 c2 . add ( a2 . r e s u l t ( ) , c1 . r e s u l t ( ) [ 2 1 : 1 6 ] ) ;
76 c3 . add ( a3 . r e s u l t ( ) , c2 . r e s u l t ( ) [ 2 1 : 1 6 ] ) ;
77 c4 . add ( a4 . r e s u l t ( ) , c3 . r e s u l t ( ) [ 2 1 : 1 6 ] ) ;
78 c5 . add ( a5 . r e s u l t ( ) , c4 . r e s u l t ( ) [ 2 1 : 1 6 ] ) ;
79 c6 . add ( a6 . r e s u l t ( ) , c5 . r e s u l t ( ) [ 2 1 : 1 6 ] ) ;
80 c7 . add ( a7 . r e s u l t ( ) , c6 . r e s u l t ( ) [ 2 1 : 1 6 ] ) ;
81 endrule
82
83 rule i n c r c o u n t e r ( rcnt < 4 ’ d15 ) ;
84 rcnt <= rcnt + 1 ;
85 endrule
86
87 rule a s s i g n r e s ;
88 i f ( rcnt == 4 ’ d14 )
89 cout <= tagged Val id ({ c7 . r e s u l t ( ) [ 1 5 : 0 ] ,

c6 . r e s u l t ( ) [ 1 5 : 0 ] , c5 . r e s u l t ( ) [ 1 5 : 0 ] ,
c4 . r e s u l t ( ) [ 1 5 : 0 ] , c3 . r e s u l t ( ) [ 1 5 : 0 ] ,
c2 . r e s u l t ( ) [ 1 5 : 0 ] , c1 . r e s u l t ( ) [ 1 5 : 0 ] ,
c0 . r e s u l t ( ) [ 1 5 : 0 ] } ) ;

90 else
91 cout <= tagged I n v a l i d ;
92 endrule
93
94 method Action load ( Bit #(128) f , Bit #(128) g ) ;
95 f i n <= {2 ’ d0 , f [ 1 2 7 : 1 1 2 ] , 2 ’ d0 , f [ 1 1 1 : 9 6 ] , 2 ’ d0 ,

f [ 9 5 : 8 0 ] , 2 ’ d0 , f [ 7 9 : 6 4 ] , 2 ’ d0 , f [ 6 3 : 4 8 ] , 2 ’ d0 ,
f [ 4 7 : 3 2 ] , 2 ’ d0 , f [ 3 1 : 1 6 ] , 2 ’ d0 , f [ 1 5 : 0 ] } ;

96 g i n <= g ;
97 a0 . r e s e t ( ) ;
98 a1 . r e s e t ( ) ;
99 a2 . r e s e t ( ) ;

100 a3 . r e s e t ( ) ;
101 a4 . r e s e t ( ) ;
102 a5 . r e s e t ( ) ;
103 a6 . r e s e t ( ) ;
104 a7 . r e s e t ( ) ;
105 rcnt <= 0 ;
106 endmethod
107
108 method Maybe#(Bit #(128) ) r e s u l t ( ) ;
109 return cout ;
110 endmethod
111 endmodule
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Abstract

This paper chronicles our experiences using CUDA to implement a parallelized variant of Pollard’s
rho algorithm to solve discrete logarithms in groups with cryptographically large moduli but smooth or-
der using commodity GPUs. We first discuss some key design constraints imposed by modern GPU
architectures and the CUDA framework, and then explain how we were able to implement efficient
arbitrary-precision modular multiplication within these constraints. Our implementation can execute
roughly 51.9 million 768-bit modular multiplications per second — or a whopping 840 million 192-bit
modular multiplications per second — on a single Nvidia Tesla M2050 GPU card, which is a notable
improvement over all previous results on comparable hardware. We leverage this fast modular multipli-
cation in our implementation of the parallel rho algorithm, which can solve discrete logarithms modulo
a 1536-bit RSA number with a 255-smooth totient in less than two minutes. We conclude the paper by
discussing implications to discrete logarithm-based cryptosystems, and by pointing out how efficient im-
plementations of parallel rho (or related algorithms) lead to trapdoor discrete logarithm groups; we also
point out two potential cryptographic applications for the latter. Our code is written in C for CUDA and
PTX; it is open source and freely available for download online.

1 Introduction

Over the past several decades, the algorithms and symbolic computation research communities have made
considerable advances with respect to state-of-the-art algorithms for solving many number-theoretic prob-
lems of interest. At the same time, Moore’s law has ensured steady speed increases in the computing devices
on which these algorithms run. The results have been astounding: modern symbolic computation packages,
such as Maple2 and Mathematica3, accept arbitrary-precision operands and can solve a plethora of useful
problems very efficiently. Nonetheless, much work remains; there exist many fundamental problems for
which no efficient (i.e., polynomial-time) algorithm is known. While there is considerable interest in ex-
panding the range of problems that a modern symbolic computation toolkit can solve efficiently, it turns
out that there are also practical advantages to having some problems remain intractable, specifically when
the “inverse problem” is efficient to compute. In particular, such one-way functions give rise to public-key
cryptosystems, such as the ones that protect our everyday online transactions.

In practice, nearly all public key cryptosystems derive their security guarantees from assumptions about
(possibly relaxations of) one of the following three types of presumed ‘hard’ problems: those related to

1The latest version of this paper is available as CACR Tech Report 2012-02, http://cacr.uwaterloo.ca/
techreports/2012/cacr2012-02.pdf.

2http://www.maplesoft.com/
3https://www.wolfram.com/mathematica/
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factoring large integers, those related to computing discrete logarithms, or those related to solving certain
computational problems on integer lattices. This paper is concerned with a variant of the second problem
on this list; i.e., that of computing discrete logarithms when the modulus is large but has smooth totient
(more precisely, it focuses on computing discrete logarithms in the multiplicative group of units modulo
N when the group order ϕ(N) is B-smooth for some B � N ; that is, when all of the prime factors of
ϕ(N) are less than B). In particular, we explore the extent to which one can leverage the massive, yet
cost-effective, parallelism provided by modern general-purpose graphics processing units (GP GPUs) to
solve discrete logarithms (with respect to certain special moduli) that would otherwise be impractical to
solve using CPUs alone. We also discuss the implications of being able to solve such discrete logarithms
for existing discrete logarithm-based cryptosystems, and demonstrate how this ability gives rise to a useful
cryptographic primitive called a trapdoor discrete logarithm group.

Outline. Before commencing our foray into parallel programming on GPUs with CUDA and PTX in §3,
we first overview related work in the literature in §1.1, and then briefly touch on some mathematical pre-
liminaries, including discrete logarithms and the parallel rho method for computing them, in §2. The key to
an efficient realization of parallel rho on GPUs is fast modular multiplication; therefore, we devote much of
§4 to the implementation details of efficient arbitrary-precision modular multiplication in CUDA, including
various optimizations that lead to dramatic performance improvements over a naive implementation. §4 also
discusses how we tailored the parallel rho method to run well within the hardware constraints of CUDA
GPUs. A performance evaluation of our implementation appears in §5; based on these empirical observa-
tions, as well as some theoretical analysis, §6.1 discusses the implications for deployed discrete-logarithm-
based cryptosystems, while §6.2 concludes that GPU-based implementations of parallel rho are sufficient to
realize trapdoor discrete logarithm groups, and suggests some possible cryptographic applications. §7 wraps
up with a brief summary and a pointer to our open source implementation.

1.1 Related work

In recent years, there has been considerable interest in using commodity graphics processing units (GPUs)
to perform highly parallelized computations at a low cost, especially for use in speeding up (and attacking)
public key cryptosystems. Because GPUs are particularly well suited to solving systems of linear equations,
it should be unsurprising that several high-speed implementations of lattice-based cryptosystems have suc-
cessfully employed them. For example, Hermans et al. [19] implemented NTRUEncrypt — the encryption
function for the NTRU cryptosystem — in CUDA and ran it on an Nvidia GTX 280 graphics card at a record-
breaking throughput of 200,000 encryptions per second with a 256-bit security level. Aguilar et al. [1] ported
their single-server lattice-based private information retrieval (PIR) scheme to run on GPUs; in all of their
experiments, Aguilar et al. observed an 8x–9x improvement in throughput when compared to throughput on
a system composed of similarly priced CPUs. Several other research groups have obtained promising results
using GPUs to perform modular exponentiations [15, 17, 27, 28], an operation that forms the basis of many
number-theoretic public key cryptosystems. Harrison and Waldron [17], for example, report a 4x throughput
increase using GPUs instead of comparably priced CPUs for the special case of computing 1024-bit modular
exponentiations. More recently, Neves and Araujo [28] obtained similar positive results by implementing
arbitrary-precision modular exponentiations in CUDA. The present paper focuses on leveraging GPUs to
do the inverse of modular exponentiation; i.e., to solve instances of one variant of the so-called discrete
logarithm problem.

Perhaps the most relevant prior work along these lines is that of Bailey et al. [2]; they describe their
efforts to use several clusters of conventional computers, PlayStation 3 consoles, powerful graphics cards,
and FPGAs to break the Certicom ECC2K-130 challenge [13]. (A more recent paper [4] further elaborates on
how the team has optimized their implementation for efficient binary field arithmetic on commodity GPUs.)
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As in the present work, Bailey et al. use the parallel rho method to solve discrete logarithms; however,
our efforts differ in that the ECC2K-130 challenge involves solving discrete logarithms in an elliptic curve
over a binary field, whereas this work considers the problem of solving discrete logarithms in a special
class of multiplicative groups. The latter setting is quite different since it involves computing modular
arithmetic with a very large modulus, rather than computing binary field elliptic curve arithmetic. At the
time of writing, the team’s efforts to break ECC2K-130 are still underway; the interested reader should
consult http://ecc-challenge.info/ for nearly real-time progress updates. Other groups [7, 8]
have obtained positive results using game consoles — specifically, the Cell-based PlayStation 3 — to solve
discrete logarithms over elliptic curves using the parallel rho method, but so far no other group has reported
positive results using commodity hardware to solve discrete logarithms in the setting considered in this work.

The current state of the art with respect to fast modular multiplications on GPUs appears to be Bernstein
et al.’s work on ‘The Billion-Mulmod-Per-Second PC’ [5]. The authors of that work managed to obtain
an impressive 481 million 192-bit modular multiplications per second on an Nvidia GTX 295 graphics
card. The Nvidia GTX 295 has 480 cores that each run at 1.2 GHz; thus, their implementation achieves
a per-core throughput of about 1 million 192-bit modular multiplications per second, which is about one
modular multiplication per 1200 clock pulses on each core. The experiments considered in this paper use two
Nvidia Tesla M2050 cards, which each have 448 cores that run at 1.55 GHz. Our implementation computes
roughly 840 million 192-bit modular multiplications per second on each one of these cards — a per-core
throughput of about 1.875 million 192-bit modular multiplications per second, which is about one modular
multiplication per 830 clock pulses on each core.4 Several other groups have also implemented efficient
modular multiplication in CUDA; unfortunately, the source code for most of these implementations is not
publicly available, thus preventing their numerous “speed records” from being independently replicated or
verified. To avoid such shortcomings in our own work, all of our source code is open source and freely
available for download from http://crysp.uwaterloo.ca/software/.

2 Mathematical preliminaries

This section provides a terse overview of the discrete logarithm problem and Pollard’s rho method [34] for
computing discrete logarithms, as well as van Oorschot and Wiener’s approach [40] to parallelizing Pollard’s
rho. It also briefly discusses Pollard’s p−1 factoring algorithm [33], which will be relevant to the discussion
in §6.2. We begin with a formal statement of the discrete logarithm problem.

Definition 1 (Discrete logarithm problem [25, §3.6]). Given a finite, cyclic group G of order n, a gener-
ator g of G, and an arbitrary group element α ∈ G, the discrete logarithm problem is to find the unique
integer exponent x in the interval [0, n− 1] such that gx = α. The exponent x is the discrete logarithm of α
with respect to g in G.

Our focus in this work is on solving discrete logarithms in cyclic subgroups G of the multiplicative group
of units moduloN . The parallel rho method has fallen out of fashion for computing discrete logarithms in this
setting, with more specialized algorithms such as index calculus being preferred [25, §3.6.5]; nonetheless, in
the special case where the group order n has only small factors, Pollard’s rho may dramatically outperform

4Fundamental differences exist between the Nvidia GTX 295 graphics cards that Bernstein et al. used and the
Nvidia Tesla M2050s used in this work. The latter cards are general-purpose GPUs, rather than standard graphics cards like those
in the GTX series; as such, they possess certain characteristics that make them more suitable for general-purpose computations (for
example, computing modular multiplications). Most significantly, the cards in the Tesla series have more memory than those in the
GTX series do, and the Tesla M2050 can perform true 32-bit multiplication in hardware, whereas the GTX 295 uses a sequence
of 24-bit multiplications to simulate hardware support for 32-bit multiplications. Thus, comparing the relative performance of the
two implementations requires a more nuanced approach than simply comparing per-core throughputs; we omit a more meaningful
comparison, as such a comparison is not the goal of this work.
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index calculus, and it is on this special case that we focus our attention. We do note, however, that Pollard’s
rho method is currently the standard technique for computing discrete logarithms on elliptic curves [4] and
many standard texts (e.g. [25, §3.6.3] or [14, §31.9]) therefore cover it in some depth. We briefly describe
the algorithm below; however, the interested reader is encouraged to consult one of the aforementioned texts
for a more thorough description of the algorithm and analysis of its runtime.

Pollard’s rho method. Pollard’s rho algorithm is essentially just a clever way to exploit the well-known
birthday paradox. In a nutshell, the birthday paradox tells us that, on average, one needs only select about√
πn/2 random elements from a set of n alternatives (with replacement) before encountering a collision

(wherein a previously selected element is selected again). This fact allows one to compute the discrete
logarithm x of h ∈ G with respect to g by repeatedly selecting random exponents ai, bi ∈R [0, n − 1] to
obtain random group elements gaihbi ∈ G. After sufficiently many such random selections, a collision will
occur; in particular, the process eventually yields two triples (ai1 , bi1 , g

ai1hbi1 ) and (ai2 , bi2 , g
ai2hbi2 ) such

that gai1hbi1 = gai2hbi2 and bi1 6≡ bi2 mod n, whence it follows that ai1 + bi1x ≡ ai2 + bi2x mod n,
and therefore x = (a2 − a1)(b1 − b2)−1 mod n. The birthday paradox tells us that an expected number of√
πn/2 random selections suffice to find such a collision; thus, the natural algorithmic instantiation of this

process solves the discrete logarithm problem with an expected runtime in Θ(
√
n), and uses Θ(

√
n) storage.

Pollard’s big idea was to modify the above observation to find the collisions without having to store
Θ(
√
n) such triples. To do this, he proposed using a function f : G→ G, called an iteration function, that is

chosen so that 1) it is efficient to compute, 2) it behaves heuristically like a randomly selected mapping from
G to itself, and 3) it maps a group element ga1hb1 to ga2hb2 in such a way that a2 and b2 are easy to compute
from a1 and b1. The actual instantiation for f that Pollard proposed is

f(x) =





hx if 1 ≤ x < N
3 ,

x2 if N
3 ≤ x < 2N

3 , and
g x if 2N

3 ≤ x <N,

(1)

which is essentially the same function that we use in our implementation.5 The algorithm then proceeds by
starting with a random group element ga0hb0 and iteratively applying f to select the subsequent “random”
group elements. It is easy to see that when a collision eventually occurs (after an expected

√
πn/2 iterations,

assuming perfectly random behaviour of f ), the subsequent iterations of the process form a cycle, which can
be detected using a cycle finding algorithm such as that of Floyd [16] or Brent [10]. Moreover, the group
element gaihbi = f (i)(ga0hb0), where f (i)(·) denotes that f is iteratively applied to the operand i times, is
easily expressed in terms of g and h, so once a cycle (hence, collision) is found, one can use it to compute
the discrete logarithm as above.

The parallel rho method. Regrettably, Pollard’s rho method as presented above does not parallelize well.
The reason for this is that iterative application of f is an inherently serial process that each thread of execution
must perform independently. It turns out that invoking the procedure Ψ times in parallel yields sublinear
expected speedups (in particular, the expected speedup is proportional to

√
Ψ rather than Ψ). Van Oorschot

and Wiener [40] proposed an ingenious way to bypass this limitation using the notion of distinguished points.
(A distinguished point is simply some group element that has an easily testable property, such as a certain

5Teske [39] subsequently proposed a better choice for f , which can reportedly reduce number of iterations by ≈ 20% on average.
It is possible that switching to Teske’s iteration function would lead to speedups in our implementation, although we suspect that
the overhead associated with evaluating the more complicated function on a GPU would increase the cost of an iteration so much
as to negate any purported performance increases. Nonetheless, it would be interesting and worthwhile to experiment with Teske’s
alternative iteration function (or some middle ground between Teske’s function and Pollard’s function) as a direction for future
work.
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number of trailing zeros in its binary representation.) Under their regime, one thread acts as a server and
Ψ threads act as clients; each client thread starts the iteration process at a different random group element
with known representation in terms of g and h and iterates until it hits a distinguished point. When a client
thread encounters its first distinguished point gaihbi = f (i)(ga0hb0), it sends the triple (ai, bi, g

aihbi) to
the server thread and starts the iteration process anew with a fresh random group element. Upon receiving
a triple (ai1 , bi1 , g

ai1hbi1 ) from some client such that gai1hbi1 = gai2hbi2 and bi1 6≡ bi2 mod n for some
previously received triple (ai2 , bi2 , g

ai2hbi2 ), the server computes the discrete logarithm just as it did before.
By the same observation used above, if two threads ever encounter a collision (be it at a distinguished point
or not), then all subsequent iterations of those two threads necessarily follow identical trails; thus, the next
distinguished point that either thread encounters is also necessarily a collision. In particular, each of the Ψ
threads is searching for collisions with any group element encountered by any other thread, and the expected
speedup becomes linear in Ψ.

Pollard’s p − 1 method. Pollard’s p− 1 factoring algorithm is a special-purpose factoring algorithm that
uses Fermat’s Little Theorem to find certain, special factors of an integer. The key observation behind the
technique is that working in the multiplicative group of units modulo n is equivalent to working in the
multiplicative groups of units modulo each of n’s prime-power factors. Moreover, Fermat’s Little Theorem
says that if gcd(g, p) = 1 for a prime p, then gk(p−1) ≡ 1 mod p for all k, hence p | gcd(gk(p−1) − 1, n).
This suggests the following algorithm for finding prime factors p of n, subject to the condition that all of
the prime factors of p − 1 are bounded above by some smoothness bound B (in such a case, p − 1 is called
B-smooth): Fix a positive integer B and compute x =

∏
qblogq Bc, where the product is taken over all

primes q less than B, then compute and return d = gcd(gx − 1, n). If 1 < d < n, then d is a product of all
prime factors p of n for which p− 1 is B-smooth. A simple modification involves progressively increasing
B in the computation and computing the gcd at each step to recover the individual prime factors (rather than
their product). Note that this procedure requires between B/ ln 2 and 1.5B/ ln 2 modular multiplications,
depending on whether modular exponentiations are performed with naive square-and-multiply or a somewhat
more efficient algorithm.

3 GPU programming with ‘C for CUDA’ and PTX

To meet the demands of increasing screen resolutions, frame rates, and scene complexity seen in today’s
video games, modern graphics cards have evolved into extremely powerful computing platforms that leverage
a large degree of parallelism compared to regular CPUs. This has led to much interest in harnessing the power
of GPUs as massively parallel co-processors working alongside regular CPUs in applications outside of
graphics processing. To facilitate such uses, Nvidia has developed the Compute Unified Device Architecture
(CUDA) parallel computing platform and programming model and the Parallel Thread eXecution (PTX)
instruction set architecture, which together form the basis for their GeForce (for consumer PCs), Quadro
(for professional workstations), and Tesla (for high-performance general-purpose computing) lines of GPU
devices [29].

Nvidia GPUs. The architecture of Nvidia GPU devices exhibit fundamental differences from most CPU-
based systems, and effectively utilizing their computational power necessitates an understanding of these
differences. §1.1.1 of Nvidia’s CUDA C Best Practices Guide [31] describes the most important differences,
which mostly pertain to how GPU devices handle threading and memory access; for completeness, we
summarize the key architectural features of CUDA GPU devices.

A typical Nvidia GPU contains several streaming multiprocessors (SMPs), each of which consists of
several streaming processors (SPs) and special function units (SFUs), an instruction decoder, and some
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(a) An exploded view of a single CUDA core.
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(b) The internal structure of one SMP in the Fermi archi-
tecture.

Figure 1: The internal structure of a streaming multiprocessor (SMP) in the Fermi architecture and an ex-
ploded view of a single streaming processor (SP), or “CUDA core”. This diagram is adapted from Nvidia’s
documentation [30].

shared memory. The SPs are known colloquially as CUDA cores. The Tesla M2050 cards that we use
in our experiments are based on the Nvidia Fermi architecture, which has 32 CUDA cores and 4 SFUs
per SMP (the M2050 itself is comprised of 14 SMPs). Each SMP in the GPU is capable of executing a
single instruction at a time, which means that the 32 CUDA cores in that SMP must each execute the same
instruction simultaneously, albeit on different data (this is called single instruction/multiple data or SIMD).
Nvidia calls a bundle of 32 threads executing in parallel on an SMP a warp, which constitutes the smallest
executable unit of parallelism on a CUDA device. All Nvidia GPUs can support at least 24 active warps (768
active threads) per SMP — and some higher-end GPUs can support 32 active warps per SMP — where each
warp has its own set of registers; once the GPU allocates registers to a warp, those registers stay allocated
to that warp until it finishes execution. This makes threads on the GPU extremely lightweight compared to
their counterparts on a regular CPU. An application can queue up thousands of threads and when the GPU
must wait on one warp of threads, it simply begins executing work (at the next clock pulse) on another warp
of threads, with no intervention from the host device and no swapping of register state. However, getting
good performance out of threads in CUDA still requires the software developer to keep several caveats in
mind. For example, if there is a conditional branch and some threads in a warp take this branch while others
do not (called warp divergence), then the other threads will just idle until the branch is complete and they
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Thread

Shared memory L1 cache

L2 cache

Local RAM

Figure 2: The memory hierarchy in CUDA GPU devices based on the Nvidia Fermi architecture. This
diagram is adapted from Nvidia’s documentation [30].

all converge back together on a common instruction. The situation is even worse when two or more threads
from a warp each take a a different conditional branch: only one branch is executed at a time, and the overall
execution time becomes the sum of the execution times of each branch taken (rather than the maximum
execution time across all branches, as one might intuitively expect).

Figure 1 illustrates the structure of SMPs in the Nvidia Fermi architecture; 1(a) gives an exploded view
of a single CUDA core within the SMP, while 1(b) shows the internal structure of the entire SMP. Each
CUDA core resembles a regular CPU core but is much simpler, reflecting its heritage as a pixel shader. It has
a pipelined floating-point unit (FPU), a pipelined integer unit (INT), some logic for dispatching instructions
and operands to these units, and a queue for holding results, but it lacks its own general-purpose register file,
L1 cache, function units for each data type, and load/store units for retrieving and saving data.

The other important difference between CUDA GPU devices and CPU-based systems is the memory
hierarchy. Memory on the GPU is segmented, both physically and virtually, into several different types, each
of which has its own special purpose and performance characteristics. For one thing, the GPU has a very
large frame buffer, which Nvidia calls local RAM, on which application developers can store their data; the
local RAM is further subdivided into read-write global memory, read-only constant memory, and read-only
texture memory. There is also a small shared memory and some L1 cache that is local to each CUDA core,
and an L2 cache that all SMPs on the GPU device share. Figure 2 illustrates the memory hierarchy in CUDA
GPU devices based on the Nvidia Fermi architecture. Carefully managing these different types of memory
is important, as the latencies experienced when a thread reads from or writes to memory depends on that
memory’s proximity to the CUDA core running the thread. In the extreme case of fetching data from the
host device’s memory, these data must travel along the PCIe bus to get to the GPU device, thus incurring
extremely high latencies and throughputs that are an order of magnitude or more slower than fetching data
from memory on the device. According to Nvidia’s documentation [30], access to local RAM requires 200 –
300 clock cycles, while access to on-chip memory (registers, shared memory, L1 cache) requires only one
clock cycle. Thus, when reading blocks from (or writing blocks to) local RAM or memory on the host device,
it is imperative to use a coalesced access pattern, wherein the blocks occupy consecutive memory addresses;
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this allows CUDA to batch many small transfers into a single larger transfer. To facilitate effective use
of shared memory, cache, and local RAM, CUDA-enabled programming languages such as ‘C for CUDA’
(see below) include new variable-type qualifiers (__device__, __constant__, and __shared__),
allowing programmers to specify where to store the data referenced by a variable.

C for CUDA. Software developers can use CUDA-enabled variants of several industry-standard program-
ming languages to access the virtual instruction set and memory of the parallel computing elements in CUDA
GPUs. The most common CUDA-enabled language, and the one used in this work, is a variant of C with
some additional Nvidia extensions called ‘C for CUDA’. CUDA applications are partitioned into completely
encapsulated GPU kernels with C statements interleaved; the kernels are executed on the GPU and the C
statements on the host CPU. Function-type qualifiers (analogous to the aforementioned variable-type qual-
ifiers) specify where a function should run: the __host__ function-type qualifier specifies that the host
device both invokes and runs the function; the __global__ function-type qualifier specifies that func-
tion is a kernel, meaning that the host device invokes the function, but it runs on the GPU device; and the
__device__ function-type qualifier specifies that code on the GPU device invokes the function and the
function runs on the GPU. CUDA imposes a two-tier hierarchical structure on its threads, which the ap-
plication developer specifies using a new <<<· · · , · · ·>>> syntax; groups of threads form thread blocks, and
groups of thread blocks form a thread grid. For example, an invocation of the form kernel<<<1, N>>>(· · · );
executes kernelN times in parallel by N different threads, where each of these threads has a unique thread
ID that is accessible within the kernel through the built-in threadIdx variable. Threads within a block
always run on a single CUDA core, which ensures that synchronization and cooperation between threads
within a block is inexpensive, whereas different thread blocks may run on different MPs and therefore run
independently. This design simplifies scaling, since it enables GPUs with more SMPs to process more blocks
in parallel without requiring changes to the program or kernel configuration. Nvidia’s nvcc compiler trans-
lates C for CUDA device source code into device-independent PTX code.

The PTX ISA. PTX is a device-independent pseudo-assembly language for CUDA GPU devices. It pro-
vides a means for software developers to make fine-grained optimizations to their code before the ptxas
compiler converts it into the final device-specific binary file, which is later loaded and executed on the
GPU. PTX exposes several useful instructions that the nvcc compiler fails to utilize; most relevant to our
implementation of modular multiplication are the instructions for add-with-carry-in and optional carry-out
(ADDC{.cc}), subtract-with-borrow-in and optional borrow-out (SUBC{.cc}), and the fused integer multiply-
and-add instruction (MAD{.hi, .lo, .wide}). The latter instruction enables our implementation to multiply
two 32-bit unsigned integers, and then add a third 64-bit integer, placing the full 64-bit result in a 64-bit
register. The PTX ISA also gives developers some control over the allocation and use of registers, which is
helpful in minimizing unnecessary copying of register values when the input to one instruction is the output
of some earlier instruction.

4 Arbitrary-precision modular multiplication and parallel rho on GPUs

Montgomery multiplication. Our implementation of arbitrary-precision modular multiplication uses the
well-known Montgomery multiplication and reduction techniques [26]. We briefly recall how ordinary
Montgomery multiplication and reduction work, before discussing the coarsely-integrated operand scan-
ning (CIOS) algorithm for modular Montgomery multiplication, which is the variant that we found to give
the best performance in our CUDA implementation.

LetN be a fixed, odd k-bit integer, letR = 2k (so 2k−1 < N < 2k andR > N with gcd(N,R) = 1) and
let x and y be two integers in the range [0, N − 1]. Montgomery multiplication allows for the computation
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of xy mod N without explicitly carrying out the costly classical modular reduction step. To do this, the
multiplicands x and y must first be “Montgomerized” to N -residues: x̃ = xR mod N and ỹ = yR mod N .
The Montgomery multiplication algorithm computes the N -residue z̃ of z = xy from x̃ and ỹ, which turns
out to be much faster than computing xy mod N directly from x and y (because modular reduction and
division by R = 2k in binary reduces to truncation and rightward bit-shifts). Define R′ (= R−1 mod N )
and N ′ to be integers that satisfy Bézout’s identity [20, §1.2], R · R′ + N ·N ′ = 1; these values are easily
computed with the extended Euclidean algorithm [25, §2.4]. The Montgomery product of x̃ and ỹ is

z̃ = x̃ỹR′ mod N

= (xR)(yR)R−1 mod N

= (xy)R mod N.

The cost savings come from the observation that one can evaluate the above expression using the following
procedure. Compute t = x̃ỹ, then u = (t+ (tN ′ mod R)N)/R; if u > N then return u−N , else return u.
The desired product z is then obtained by computing z = z̃R′ mod N . Note that the Montgomery method
incurs some overhead in computing R′ and N ′, and that conversion to and from N -residues each require a
reduction modulo N . However, if an algorithm computes many modular multiplications with respect to the
same modulus to produce only a small set of outputs (such as modular exponentiation, or — in our case —
the iterative collision search in parallel rho), the more efficient Montgomery multiplication step results in
significant cost savings.

Coarsely-integrated operand scanning. Several alternative algorithms exist for computing the Mont-
gomery multiplication step. In our implementation, we use the coarsely-integrated operand scanning (CIOS)
method due to Koç et al. [21]. The algorithm is integrated because it alternates between multiplication and
reduction steps in the computation (that is, it integrates the two procedures into one). The coarsely- prefix
refers to the frequency with which the algorithm alternates between the two steps; CIOS alternates after
processing an array of words, which is in contrast to a finely-integrated method, which alternates after pro-
cessing a single word. Finally, operand scanning refers to the fact that the outer loop in the algorithm is over
the words of the operands (an alternative approach is product scanning, wherein the outer loop is over the
words of the product itself). The reader should consult Koç et al.’s paper [21, §5] for full details of the CIOS
algorithm.

Interestingly, Bernstein et al. report that “schoolbook” (Montgomery) multiplication gave the best per-
formance in their CUDA implementation of 192-bit modular multiplication [5]; however, our experiments
indicate that the CIOS algorithm gives superior performance. This is likely due to its smaller auxiliary stor-
age requirements (the integrated nature of the CIOS method means that it requires just s+2 words of auxiliary
storage for an s-word modulus, contrasted with 2s+ 2 words for the schoolbook method; this enables more
threads to run in parallel on the GPU without exhausting the register pool). Neves and Araujo [28] suggest
that the finely-integrated product scanning (FIPS) Montgomery multiplication method (also from Koç et
al. [21]) yields better performance on GPUs than CIOS does, since each word of the final product can be
calculated individually in parallel (whereas the long carry chains in CIOS can make instruction-level paral-
lelism difficult). However, as Bernstein et al. have pointed out [5], using a single thread to compute an entire
s-word multiplication leads to improved compute-to-memory-access ratios and eliminates synchronization
overhead, thus resulting in better overall performance.

Implementing CIOS with CUDA and PTX. Our implementation of CIOS Montgomery multiplication
follows the algorithm given by Koç et al. in §5 of their paper almost exactly, including the suggested im-
provement for integrating the shifting into the reduction. Our initial implementation looked much like the
pseudocode in that paper; however, its performance was underwhelming, and a mysterious bug caused it to
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// x <- x - y; x and y are both WORDS words long
__device__ void _sub(uint32_t *x, const uint32_t *y)
{

asm("sub.cc.u32 %0, %1, %2;"
: "=r"(x[0]) : "r"(x[0]), "r"(y[0]));

for (int i = 1; i < WORDS; i++)
{

asm("subc.cc.u32 %0, %1, %2;"
: "=r"(x[i]) : "r"(x[i]), "r"(y[i]));

}
asm("subc.u32 %0, %1, %2;"

: "=r"(x[WORDS]) : "r"(x[WORDS]), "r"(y[WORDS]));
}

Figure 3: PTX-based implementation of arbitrary-precision subtraction.

// return x * y + c
static inline __device__ uint64_t mad_u32(

const uint32_t x, const uint32_t y, const uint64_t c)
{

uint64_t out;
asm("mad.wide.u32 %0, %1, %2, %3;"

: "=l"(out) : "r"(x), "r"(y), "l"(c));
return out;

}

Figure 4: PTX-based implementation of fused multiply-and-add.

produce random results in some invocations. (Rather frustratingly, the exact same code always succeeded
when we ran it in the now deprecated CUDA device emulator.) Eventually, we traced the root of the problem
to our use of memset to zero the auxiliary array; a race condition was occurring wherein subsequent lines
of code sometimes used that memory before the GPU had finished zeroing it. To avoid this, we factored the
first iteration out of the outer CIOS loop and modified it to work regardless of the state of the auxiliary array.
This modification had the fringe benefit of making the code slightly faster (by entirely avoiding the call to
memset and several unnecessary additions of 0). Likewise, we factored the last iteration of the outer CIOS
loop to place the result directly into the return value, thus avoiding an unnecessary copy at the end of the
algorithm.

By far the greatest performance gains occurred when we replaced arithmetic that used standard C-like
syntax with inline PTX assembly. For example, rewriting our arbitrary-precision subtraction code to use
the subtract-with-borrow-in and optional borrow-out PTX instruction shaved several nanoseconds off the
average execution time of each modular multiplication. Figure 3 shows the optimized arbitrary-precision
subtraction function; note that in our final implementation, the for loop is unrolled to save a few more
clock cycles. Similarly, we used PTX’s fused multiply-and-add instruction to get significant speedups in the
inner CIOS loops (see Figure 4).

Manual loop unrolling proved to be another crucial optimization; at first glance, this optimization appears
to be somewhat incompatible with implementing arbitrary-precision arithmetic. We solved this by writing a
simple Perl script that generates completely unrolled PTX assembly for a given modulus size, which we then
link into the binary at compile time. The output of the Perl script also operates entirely on registers instead
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of arrays, which is much faster in CUDA, and not possible using an ordinary for loop.

Parallel rho with GPUs. We leverage our arbitrary-precision modular multiplication code to implement
the parallel rho method. We run the “server thread” on the CPU and each of the “client threads” on one
of two Nvidia Tesla M2050 GPU cards (cf. §2). Using Nvidia’s CUDA Occupancy Calculator6 and some
experimentation, we found that launching each kernel with 16 warps = 512 threads per thread block and 50
total thread blocks per card (which is 25,600 threads per thread grid) provides reasonably good occupancy
when our implementation is run to solve discrete logarithms with a 768-bit modulus on our Tesla M2050
cards.

Because there is no lightweight way to interrupt a kernel once it is invoked, we instead have each thread
perform some fixed number of iterations before it returns; in particular, each of the 25,600 threads performs
1000 iterations. For the iteration function, we use a “Montgomerized” version of Pollard’s original iteration
function (Equation (1)), but we note that our use of the iteration function differs somewhat from its regular
usage in van Oorschot and Wiener’s parallel rho method. When a client thread encounters a distinguished
point, it simply outputs the triple (ai, bi, g

aihbi) to the server thread on the host and then continues iterating
from that element rather than starting over from a new random group element. We do this to avoid having to
initialize a new random element from the server between invocations, and to avoid having all of the threads
in the same warp stall for the remainder of the current kernel invocation.7 If the server does not receive any
collisions during a kernel invocation, it simply relaunches the kernel without having to reinitialize or modify
any memory on the GPU, and the threads continue iterating from where they left off. This keeps overhead
low, but it also means that some client threads could get caught in cycles that do not contain any distinguished
points (using a cycle-finding algorithm to detect this would be detrimental to overall performance). However,
the expected cycle size is about

√
n, where n is the order of the group G; thus, if the frequency F of

distinguished points is such that F � 1√
n

, then the probability that this happens is low enough that we
can safely ignore it. We define our distinguished points to be elements of x ∈ G such that the binary
representation of the N -residue of x (i.e., of the Montgomery representation of x) has at least ten trailing
zeros, so that about one in every 1024 iterations yields a distinguished point. Since each thread performs
1000 iterations per invocation, the server thread receives about 214.6 distinguished points — or one per client
thread — each time it invokes the kernel. In the case that n ≤ 220 (so that 1

1024 � 1√
n

does not hold), we
change the definition of distinguished points to make them more numerous. In each kernel invocation, the
client threads perform a combined total of about 224.6 multiplications; thus, for n up to about 250 a single
kernel invocation usually suffices to solve the discrete logarithm.

5 Performance evaluation

For our performance benchmarks, we used a server running an Intel Xeon E5620 quad core processor
(2.4 GHz) and 2×4 GB of DDR3-1333 RAM, which is equipped with 2×Tesla M2050 GPU cards. Table 1
below summarizes the per-card performance of our arbitrary-precision modular multiplication implementa-
tion; that is, it displays the number of modular multiplications with a k-bit modulus that our implementation
can compute on a single Tesla M2050 card for various choices of k, as well as the (amortized) time required

6http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
7Of course, this is not the only strategy for efficient handling of distinguished points in a GPU environment. For instance, one

of the anonymous SHARCS 2012 reviewers points out that “[there] are good reasons not to continue walking from a distinguished
point: One can skip all bookkeeping for counting the a and b and instead store only the starting value together with the distinguished
point found. If two points collide the server can redo the computations, this time keeping track of the coefficients. For that to work
each walk should be reasonably short. See Bernstein et al. [4] and Bernstein, Lange and Schwabe [6], for details on how to handle
this in a SIMD environment”.
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to do each modular multiplication. We point out that as k increases, the execution time increases not only be-
cause it naturally takes longer to multiply larger numbers, but also because larger moduli use more registers,
and so each core can compute fewer multiplications in parallel.

Table 1: Number of k-bit modular multiplications per second and (amortized) time re-
quired per k-bit modular multiplication on each Tesla M2050 GPU card, for various k.

Bit length Modmults Number Number Time per trial Amortized time Modmults
of modulus per thread of threads of trials ± std dev per modmult per second

192 100,000 256,000 100 30.538 s± 4 ms 1.19 ns ≈ 840,336,000
256 100,000 256,000 100 50.916 s± 5 ms 1.98 ns ≈ 505,050,000
512 100,000 256,000 100 186.969 s± 4 ms 7.30 ns ≈ 136,986,000
768 100,000 256,000 100 492.6 s± 200 ms 19.24 ns ≈ 51,975,000
1024 100,000 256,000 100 2304.5 s± 300 ms 90.02 ns ≈ 11,108,000

Table 2 shows the average time required to compute a discrete logarithm with a 1536-bit RSA modulus
N = pq such that p − 1 and q − 1 are both 768-bit B-smooth integers, for various choices of B. Our
implementation uses the approach of Pohlig and Hellman [32] to solve the discrete logarithm independently
modulo p and modulo q using the parallel rho method, and then combines the results via the Chinese Re-
mainder Theorem [25, §2.4.3] to get the final discrete logarithm moduloN . In particular, each of the discrete
logarithm computations in Table 2 consists of 2 · d768/lgBe smaller discrete logarithm computations, each
at a cost proportional to

√
B. We therefore expect the total cost of the larger discrete logarithm compu-

tation to be proportional to
√
B/lgB = B0.5−(lg lgB/ lgB). When B ≈ 253, as in Table 2, we have that

lg lgB/ lgB ≈ (lg 53)/53 ≈ 0.108, so that the total running time should be near c ·B0.39 for some constant
of proportionality c.

Figure 5 plots data from Table 2. The exponent on the trend line is slightly less than the expected value of
0.39 because of overhead that is more significant at lower smoothness bounds. One source of overhead is the
Chinese remaindering step that we perform after computing the discrete logarithm modulo p and modulo q.
Another source of overhead comes from processing “remainder” submoduli of p− 1 and q − 1: to generate
N we choose all but one prime factor of p − 1 and q − 1 to be kB bits long, and the last prime factor is
about 768 mod kB bits. Since our implementation is not optimized for these smaller submoduli, they tend
to introduce some additional, nearly constant overhead to the computation time.
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Table 2: Time to compute discrete logarithms modulo a productN = pq of two 768-bit
primes, such that ϕ(N) is B-smooth, for various choices of B. The discrete logarithm
is solved independently modulo p and q using Pohlig-Hellman [32] and parallel rho,
and the results are combined via the Chinese Remainder Theorem [25, §2.4.3]. The
runtime reported in the final column is the time required to compute all three steps.

Bit length Smoothness Number Time to compute
of modulus of group order of trials discrete logarithm

1536 = 2× 768 248 100 23 s ± 1 s
1536 = 2× 768 250 100 32 s ± 2 s
1536 = 2× 768 251 100 41 s ± 3 s
1536 = 2× 768 252 100 49 s ± 4 s
1536 = 2× 768 253 100 63 s ± 5 s
1536 = 2× 768 254 100 85 s ± 7 s
1536 = 2× 768 255 100 110 s ± 10 s
1536 = 2× 768 256 100 140 s ± 20 s
1536 = 2× 768 258 100 270 s ± 30 s
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Figure 5: Plot of data from Table 2. The exponent on the trend line is slightly less than
0.39 because of overhead that is more significant at lower smoothness bounds.

By extrapolating to B = 280, we see that it should be feasible to solve discrete logarithms in groups
whose order is 280-smooth in approximately 23 hours.

6 Analysis

6.1 Implications to existing cryptosystems

The idea of exploiting the smoothness of a group’s order for attacking cryptosystems whose security relies on
the hardness of factoring or computing discrete logarithms is not new. In fact, many cryptographers advocate
the use of safe primes (primes of the form p = 2q + 1 for another prime q) specifically to avoid such attacks
(since p − 1 = 2q is not B-smooth for any B � p). However, the celebrated elliptic curve factorization
method [23] (ECM) renders these defenses ineffective by considering random elliptic curves over Zp, which,
by Hasse’s theorem [38, §V], have orders that are (essentially randomly) distributed between p + 1 − 2

√
p

and p+ 1 + 2
√
p. Thus, one can argue that, due to ECM, explicitly choosing safe primes is not helpful, since
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to ensure security we must already assume that p − 1 is non-smooth for a random prime p. Pomerance and
Shparlinski [36] study the distribution of smooth integers, and derive rigorous upper bounds on the number
of k-bit prime numbers p for which p− 1 is smooth or has a large smooth factor. Their findings suggest that
a randomly selected, cryptographically large number is not “sufficiently smooth” to make smoothness-based
attacks feasible.

We point out, however, that a bad actor could choose the modulus for a discrete-logarithm-based cryp-
tosystem with malice, inserting a trapdoor for his own use. Our experiments in §5 indicate that computing
discrete logarithms in groups of B-smooth order, for B up to at least ≈ 280, is entirely realistic with under
24 hours of computation on readily available commodity hardware. For a prime modulus N such that N − 1
is 280-smooth, one could use ECM (or some other related technique) to factor N − 1 and thus learn about its
insecurity (although this would require substantial computational effort on the part of the would-be victim).
On the other hand, detecting insecure composite moduliN is not so simple, since even determining the value
of ϕ(N) is equivalent to factoring N [25, §8.2.2]. Our analysis in the next subsection suggests that the mas-
sive parallelism afforded by GPUs only helps to widen the gap between the feasibility and detectability of
such attacks. Fortunately, most cryptosystems that base their security on the difficulty of computing discrete
logarithms work over prime moduli; however, below we point out a concrete — and realistic — attack on
zero-knowledge range proofs, which uses a difficult-to-detect composite modulus with smooth totient.

An attack on zero-knowledge ‘range proofs’. At Eurocrypt 2000, Boudot proposed a novel zero-know-
ledge proof that allows a prover to convince a verifier that a committed value is in a specific interval [9].
Boudot’s range proof relies on Lagrange’s four-square theorem [37], which states that an integer can be
expressed as a sum of (at most) four squares if and only if it is nonnegative. Suppose that a prover wishes to
convince a verifier that a commitment, say C = gx mod p, is to a value x in the interval [a, b]. To do this, the
prover and verifier each compute Ca = C/ga = gx−a mod p and Cb = gb/C = gb−x mod p, and then the
prover engages the verifier in a zero-knowledge proof of knowledge of two tuples of integers (c, d, e, f) and
(h, i, j, k) such that Ca = gc

2+d2+e2+f2 mod p and Cb = gh
2+i2+j2+k2 mod p. Of course, for soundness

the proof assumes that the prover does not know the group order, since otherwise the prover could simply
find, say, (c, d, e, f) such that c2 + d2 + e2 + f2 = x − a + ϕ(p) and thereby fool the prover. Therefore,
when p is prime (which it usually is), the verifier chooses a composite modulus N for which the prover does
not know the factorization, then the prover commits to x modulo N and proves in zero knowledge that this
new commitment is to the same x as the original commitment. Finally, the prover and verifier do the above
range proof using the commitment modulo N . If the verifier chooses a modulus N with smooth totient (thus
violating one of the assumptions needed to prove computational zero-knowledge), then when the prover
commits to his secret x in the group modulo N , the verifier can compute the discrete logarithm to learn x.8

6.2 Trapdoor discrete logarithm groups

In earlier work [18], we discussed using a CPU-based implementation of parallel rho to construct trap-
door discrete logarithm groups; that is, groups in which computing discrete logarithms is easy for anyone
in possession of a special trapdoor key, but cryptographically hard for everybody else. The GPU-based
implementation of parallel rho that we consider in this work allows for the same construction, but with a
considerably improved margin of security.

Construction. The idea behind the trapdoor discrete logarithm group construction is to work in the mul-
tiplicative group of units modulo a kN -bit RSA modulus N = pq such that p ≈ q, and both p − 1 and

8Of course, one can thwart this attack by having the verifier prove to the prover that the composite modulus is the product of two
safe primes, for example by using the technique of Camenisch and Michels [12].
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q − 1 are products of distinct kB-bit primes; here kN and kB are carefully selected parameters. The public
key is N and the private (trapdoor) key is the factorization of ϕ(N) into kB-bit primes. Computing discrete
logarithms with knowledge of the trapdoor key requires Θ

(
kN
kB
· 2kB/2

)
highly parallelizable work, whereas

the most efficient way to compute discrete logarithms without knowledge of the trapdoor key seems to be
factoring N into p and q, and then factoring p − 1 and q − 1 to recover the trapdoor key. In our original
application [18], we actually wanted trapdoor discrete logarithm groups such that computing the discrete
logarithm with the trapdoor key is tunably costly, but feasible; other applications might wish to set the cost
as low as possible subject to the construction staying secure.

Security analysis. Using the parallel rho method, the expected number of kN -bit modular multiplications
needed to compute the discrete logarithm in such a trapdoor group is c ·

(
kN
kB

)
· 2kB/2, for some constant of

proportionality c. (Note that these multiplications are almost completely parallelizable.) Given a parallelism
factor of Ψ cores, this takes about

kN
kB
· c · 2

kB/2

Ψ · µ seconds, (2)

where µ is the number of multiplications modulo an (kN/2)-bit modulus that are computable per core-
second. Thus, to tune the parameters such that discrete logarithm computations require a specific time Γ on
average, we solve for kB in the expression

2kB/2

kB
≈ Γ · µ ·Ψ

kN · c
. (3)

Through experimentation, we observe that it takes the “progressively increase B” variant of Pollard’s
p − 1 method at least about 3

5 · 2kB modular multiplications with a kN -bit modulus to factor N . (Note that
this is fewer multiplications than the estimate given in §2, since we only need to consider those primes q
such that 2kB < q < 2kB+1, and since we can assume each prime has multiplicity one in ϕ(N), given our
prior knowledge about N .) We stress that — in contrast to the case of general exponentiation, which can
potentially benefit from some parallelism — the adversary must perform these multiplications in a sequential
manner [11]; even with a very large degree of parallelism, only a very small speedup is obtainable.9 It
may be possible to parallelize the “non-progressive” variant of Pollard’s p − 1; however, this variant will
output the product of all prime factors p of N such that p − 1 is B-smooth, which in the trapdoor discrete
logarithm case is just N itself. Therefore, when kB � 85, an adversary requires about 3

5 · 2
kB

µ seconds to
factor N . We ran some experiments on an Intel Q9550 quad core CPU (2.83 GHz) that indicate a value of
µ = 385,000 mults/second on that device (which has considerably faster individual cores than our Tesla machine
does). Thus, setting kB as low as 55 yields over 1500 years of (non-parallelizable) wall-clock time to factor
N using the Pollard p − 1 method on this CPU, while requiring less than two minutes to compute trapdoor
discrete logarithms with our two M2050 cards.

Maurer and Yacobi [24, §4] point out that, since the cost of factoring increases with 2kB , while the cost of
computing discrete logarithms increases with

√
2kB , faster cores and more parallelism only help to increase

security. In particular, if µ and Ψ increase by a factor f and g, respectively, then we can revise the parameters
such that security increases by a factor of fg2.

9Other factoring algorithms, such as ECM [23] or the quadratic sieve algorithm (QS) [35], are highly parallelizable and can
factor a general modulus with sublinear asymptotic complexity; however, the linear cost of Pollard’s p − 1 factoring algorithm is
by far the most efficient method for factoring N , given its special form and our parameter selection. In other words, while both of
the aforementioned algorithms have superior asymptotic complexity to Pollard’s p− 1 factoring algorithm (depending on how one
asymptotically relates kB and kN ), the actual position on the O(2kB ) cost curve in our case is much smaller than the corresponding
position on the cost curves for these asymptotically faster algorithms. For reference, factoring a 1536-bit RSA modulus using more
efficient algorithms requires about 285 (parallelizable) work; thus, the cost curves intersect when Ψ · 2kB ≈ 285 and Pollard’s p− 1
algorithm ceases to be most efficient for larger values of Ψ · 2kB [22].
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Zero-knowledge proofs of costliness. Using a straightforward generalization of the zero-knowledge proof
that a number is a product of two safe primes, due to Camenisch and Michels [12], one can prove in zero-
knowledge that the prime factors q of ϕ(N) each satisfy 2kB < q < 2kB+1. Given some assumptions about
available computing power, Equation (2) lets us estimate how long an average trapdoor discrete logarithm
computation takes. While the validity of this proof relies on assumptions about the available computational
capacity, it does give a reliable estimate of the computational — and thus economic — cost of being able
to compute discrete logarithms, which is useful in applications such as partial key escrow [3] or our own
anonymous blacklisting [18].

7 Conclusion

In this paper, we discussed our experiences with using GPUs and Nvidia’s CUDA framework to accel-
erate the computation of discrete logarithms with respect to a special class of moduli. In particular, we
presented our approach to implementing fast, arbitrary-precision modular multiplication on GPUs using
C for CUDA and the PTX instruction set architecture, and then described how we were able to leverage
this modular multiplication to implement a parallel version of Pollard’s rho algorithm. We also exam-
ined the implications to existing cryptosystems whose security is based on the presumed intractability of
computing discrete logarithms, and pointed out that efficient implementations of Pollard’s rho for groups
with smooth order enables the construction of cryptographically secure trapdoor discrete logarithm groups.
All of our source code is open source and is freely available online from the CrySP group’s website at
http://crysp.uwaterloo.ca/software/.
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Abstract

In this talk, I will review our most recent cryptanalytic methods on MD5 and SHA-1
and discuss implementation issues. In particular I will focus on a new exact disturbance
vector analysis for SHA-1 that in contrast to current literature takes into account the
dependence of local collisions. Furthermore, we show how it can be used to implement
both an identical-prefix and a chosen-prefix collision attack on SHA-1 which improve
on the respective best known attacks





121 SHARCS 2012 Workshop Record

Solving Quadratic Equations with XL on Parallel Architectures

Chen-Mou Cheng†‡, Tung Chou†, Ruben Niederhagen†∗, Bo-Yin Yang†

†Academia Sinica, Taipei, Taiwan
‡National Taiwan University, Taipei, Taiwan

∗Technical University Eindhoven, Eindhoven, the Netherlands

Abstract

Solving a system of multivariate quadratic equations (MQ) is a hard problem whose complexity
estimates are relevant to many cryptographic scenarios. In some cases it is required in the best known
attack; sometimes it is a generic attack (such as for the multivariate PKCs), and some of the time it
determines a provable level of security (such as for the QUAD stream ciphers).

Under some reasonable-looking assumptions, the best way to solve generic MQ systems is the XL
algorithm implemented with a sparse matrix solver such as Wiedemann. Knowing how fast one can
implement this attack gives us a good idea of how future cryptosystems related to MQ can be broken,
similar to how implementations of General Number Field Sieve that factors smaller RSA numbers gives
us more insight into the security of actual RSA-based cryptosystems.

This paper describes such an implementation of XL with Block Wiedemann. We are able to solve in
2.5 days, on a US$6000 computer, a system with 30 variables and 60 equations over F16 (a computation
of about 257 F16-multiplications). This is something that we do not expect that F4/F5 would accomplish
due to its much higher space usage. The software can be easily adapted to other small fields including
F2. More importantly, it scales nicely for small clusters, NUMA machines, and a combination of both.
The software is expected to go into SAGE or other open-source projects.

keywords: XL, Gröbner Basis, Block Wiedemann, sparse solver, multivariate quadratic systems

1 Introduction

Some cryptographic systems can be attacked by solving a system of multivariate quadratic equations. For
example the symmetric block cipher AES can be attacked by solving a system of 8000 quadratic equations
with 1600 variables over F2 as shown by Courtois and Pieprzyk in [CP02] or by solving a system of 840
sparse quadratic equations and 1408 linear equations over 3968 variables of F256 as shown by Murphy and
Robshaw in [MR02] (see also remarks by Murphy and Robshaw in [MR03]). Multivariate cryptographic
systems can be attacked naturally by solving their multivariate quadratic system; see for example the analysis
of the QUAD stream cipher by Yang, Chen, Bernstein, and Chen in [YCBC07].

We describe a parallel implementation of an algorithm for solving quadratic systems that was first sug-
gested by Lazard in [Laz83]. Later it was reinvented by Courtois, Klimov, Patarin, and Shamir and published
in [CKPS00]; they call the algorithm XL as an acronym for extended linearization: XL extends a quadratic
system by multiplying with appropriate monomials and linearizes it by treating each monomial as an inde-
pendent variable. Due to this extended linearization, the problem of solving a quadratic system turns into a
problem of linear algebra.

XL is a special case of Gröbner basis algorithms (shown by Ars, Faugère, Imai, Kawazoe, and Sugita
in [AFI+04]) and can be used as an alternative to other Gröbner basis solvers like Faugère’s F4 and F5
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algorithms (introduced in [Fau99] and [Fau02]). An enhanced version of F4 is implemented for example by
the computer algebra system Magma.

There is an ongoing discussion on whether XL-based algorithms or algorithms of the F4/F5-family are
more efficient in terms of runtime complexity and memory complexity. One school of thought advocates
that for large enough systems XL with a sparse matrix solver is the best generic attack to be accounted for
cryptographers (unless certain special structures are present).

To achieve a better understanding of the practical behaviour of XL, we describe herein a parallel imple-
mentation of the XL algorithm for shared memory systems, for small computer clusters, and for a combina-
tion of both. Measurements of the efficiency of the parallelization have been taken at small size clusters of
up to 4 nodes and shared memory systems of up to 48 cores.

This paper is structured as follows: The XL algorithm is introduced in Section 2. Section 3 explains
Coppersmith’s block Wiedemann algorithm which is used for solving the linearized system. Sections 4 and 5
introduce variations of the Berlekamp–Massey algorithm that are used as building block for Coppersmith’s
block Wiedemann algorithm: Sections 4 describes Coppersmith’s version and section 5 introduces an alter-
native algorithm invented by Thomé. An implementation of XL using the block Wiedemann algorithm is
described in Section 6. Section 7 gives runtime measurements and performance values that are achieved by
this implementation for a set of parameters on several parallel systems.

Notations: In this paper a subscript is usually used to denote a row in a matrix, e.g., Ai means the i-th row
of matrix A. The entry at the i-th row and j-th column of the matrix A is denoted by Ai,j . A sequence is
denoted as {s(i)}∞i=0. The coefficient of the degree-i term in the expansion of a polynomial f(λ) is denoted
as f [i], e.g., (λ+ 1)3[2] = (λ3 + 3λ2 + 3λ+ 1)[2] = 3. The cost (number of field operations) to perform a
matrix multiplication AB of matrices A ∈ Ka×b and B ∈ Kb×c is denoted as Mul(a, b, c). The asymptotic
time complexity of such a matrix multiplication depends on the size of the matrices, on the field K, and
on the algorithm that is used for the computation. Therefore the complexity analyses in this paper use the
bound for simple matrix multiplication O(a · b · c) as upper bound for the asymptotic time complexity of
matrix multiplications.

2 The XL algorithm

The original description of XL for multivariate quadratic systems can be found in [CKPS00]; a more general
definition of XL for systems of higher degree is given in [Cou03]. The following gives a brief introduction
of the XL algorithm for quadratic systems; the notation is adapted from [YCC04]:

Consider a finite field K = Fq and a system A of m multivariate quadratic equations `1 = `2 =

· · · = `m = 0 for `i ∈ K[x1, x2, . . . , xn]. For b ∈ Nn denote by xb the monomial xb11 x
b2
2 . . . xbnn and by

|b | = b1 + b2 + · · ·+ bn the total degree of xb.
XL first chooses a D ∈ N called operational degree and extends the system A to the system R(D) =

{xb`i = 0 : |b | ≤ D − 2, `i ∈ A} of maximum degree D by multiplying each equation of A by all
monomials of degree less than or equal to D − 2. Now each monomial xd, d ≤ D is considered a new
variable to obtain a linear systemM. Note that the systemM is sparse since each equation has the same
number of non-zero coefficients as the corresponding equation of the quadratic system A. Finally the linear
system M is solved. If the operational degree D was well chosen, the linear system contains sufficient
information about the quadratic equations so that the solution for x1, x2, . . . xn of the linearized system of
R(D) is also a solution for A; this can easily be checked. Otherwise, the algorithm is repeated with a larger
D.
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Let T (D−2) = {xb : |b | ≤ D − 2} be the set of all monomials with total degree less than or equal to
D − 2. The number |T (D−2) | of all these monomials is

(
n+(D−2)

n

)
for large fields, and smaller for finite

fields GF [YC04, YC05]. Therefore the size of R(D) grows exponentially with the operational degree D.
Consequently, the choice of D should not be larger than the minimum degree that is necessary to find a
solution. On the other hand, starting with a small operational degree may result in several repetitions of the
XL algorithm and therefore would take more computation than necessary.

In general we get around this dilemma using a heuristic formula given by Yang and Chen in [YC04]. This
formula is proved for the large-field case for generic systems by Diem in [Die04], assuming the “maximal
rank conjecture” of Ralf Fröberg. In this case, where q > D (see also Moh in [Moh01]), the minimum degree
D0 required for the reliable termination of XL is given by D0 := min{D : ((1− λ)m−n−1(1 + λ)m)[D] ≤
0}.

3 The block Wiedemann algorithm

The computationally most expensive task in XL is to find a solution for a sparse linear system of equations
over a finite field. There are two popular algorithms for that task, the block Lanczos algorithm and the block
Wiedemann algorithm. However, the block Lanczos algorithm [Cop93] is not reliable for computations on
fields with a characteristic other than 0. Therefore the block Wiedemann algorithm is used for XL. This
algorithm was proposed by Coppersmith in 1994 [Cop94] and is a generalization of the original Wiedemann
algorithm [Wie86].

The block Wiedemann algorithm has several features that make it powerful for computation in XL.
From the original Wiedemann algorithm it inherits the property that the runtime is directly proportional to
the weight of the input matrix. Therefore this algorithm is suitable for solving sparse matrices, which is
exactly the case for XL. Furthermore big parts of the block Wiedemann algorithm can be parallelized on
several types of parallel architectures.

This section describes the implementation of the block Wiedemann algorithm. Although this algorithm
is used as a subroutine of XL, the contents in this section are suitable for other applications since they are
independent of the shape or data structure of the input matrix.

The block Wiedemann algorithm is a probabilistic algorithm. It solves a linear systemM by computing
kernel vectors of a corresponding matrix B in three steps which are called BW1, BW2, and BW3 for the
remainder of this paper. The following paragraphs give a review of these three steps on an operational level;
for more details please refer to [Cop94].

BW1: Given an input matrix B ∈ KN×N and m,n ∈ N with m ≥ n, the first step BW1 computes the
first N

m + N
n + O(1) elements of a sequence {a(i)}∞i=0 of matrices a(i) ∈ Kn×m using random matrices

x ∈ Km×N and z ∈ KN×n such that

a(i) = (xBiy)T , for y = Bz.

The parametersm and n are chosen such that operations on vectorsKm andKn can be computed efficiently
on the target computing architecture. In the following we treat the quotient dm/ne as a constant for conve-
nience. In practice each a(i) can be efficiently computed using two matrix multiplications with the help of a
sequence {t(i)}∞i=0 of matrices t(i) ∈ KN×n defined as

t(i) =

{
y = Bz for i = 0

Bt(i−1) for i > 0.
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Thus, a(i) can be computed as
a(i) = (xt(i))T .

Therefore, the asymptotic time complexity of BW1 can be written as

O

((
N

m
+
N

n

)
(NwBn+mNn)

)
= O

(
(wB +m)N2

)
,

where wB is the average number of nonzero entries per row of B.

BW2: Coppersmith uses an algorithm for this step that is a generalization of the Berlekamp–Massey
algorithm given in [Ber66, Mas69]. Literature calls Coppersmith’s modified version of the Berlekamp–
Massey algorithm “block Berlekamp–Massey” algorithm in analogy to the name “block Wiedemann” or
“matrix Berlekamp–Massey” algorithm.

The block Berlekamp–Massey algorithm is an iterative algorithm. It takes the sequence {a(i)}∞i=0 from
BW1 as input and defines the polynomial a(λ) of degree N

m + N
n +O(1) with coefficients in Kn×m as

a(λ) =
∑

i

a(i)λi.

The j-th iteration step receives two inputs from the previous iteration: One input is an (m + n)-tuple of
polynomials (f

(j)
1 (λ), . . . , f

(j)
m+n(λ)) with coefficients in K1×n; these polynomials are jointly written as

f (j)(λ) with coefficients in K(m+n)×n such that (f (j)[k])i = f
(j)
i [k]. The other input is an (m + n)-tuple

d(j)of nominal degrees (d(j)1 , . . . , d
(j)
m+n); each nominal degree d(j)k is an upper bound of deg(f (j)k ).

An initialization step generates f (j0) for j0 = dm/ne as follows: Set the polynomials f (j0)m+i, 1 ≤ i ≤ n,
to the polynomial of degree j0 where coefficient f (j0)m+i[j0] = ei is the i-th unit vector and with all other

coefficients f (j0)m+i[k] = 0, k 6= j0. Try choosing the polynomials f (j0)1 , . . . , f
(j0)
m randomly with degree

j0 − 1 until H(j0) = (f (j0)a)[j0] has rank m. Finally set d(j0)i = j0, for 0 ≤ i ≤ (m+ n).
After f (j0) and d(j0) have been initialized, iterations are carried out until f (deg(a)) is computed as fol-

lows: In the j-th iteration, a Gaussian elimination according to Algorithm 1 is performed on the matrix

H(j) = (f (j)a)[j] ∈ K(m+n)×m.

Note that the algorithm first sorts the rows of the input matrix by their corresponding nominal degree in
decreasing order. This ensures that during the Gaussian elimination no rows of higher nominal degree are
subtracted from a row with lower nominal degree. The Gaussian elimination finds a nonsingular matrix
P (j) ∈ K(m+n)×(m+n) such that the first n rows of P (j)H(j) are all zeros and a permutation matrix E(j) ∈
K(m+n)×(m+n) corresponding to a permutation φ(j). Using P (j), the polynomial f (j+1) of the next iteration
step is computed as

f (j+1) = QP (j)f (j), for Q =

(
In 0
0 λ · Im

)
.

The nominal degrees d(j+1)
i are computed corresponding to the multiplication by Q and the permutation

φ(j) as

d
(j+1)
i =




d
(j)

φ
(j)
i

for 1 ≤ i ≤ n,
d
(j)

φ
(j)
i

+ 1 for n < i ≤ (n+m).

The major tasks in each iteration are:
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1. The computation of H(j), which takes

deg(f (j))Mul(m+ n, n,m) = O(deg(f (j)) · n3);

note that only the coefficient of λj of f (j)(λ)a(λ) needs to be computed.

2. The Gaussian elimination, which takes O(n3).

3. The multiplication P (j)f (j), which takes

deg(f (j))Mul(m+ n,m+ n, n) = O(deg(f (j)) · n3).

In fact deg(f (j)) is always bounded by j since max(d(j)) is at most increased by one in each round. There-
fore, the total asymptotic time complexity of Berlekamp–Massey is

N/m+N/n+O(1)∑

j=j0

O(j · n3) = O
(
N2 · n

)
.

For the output of BW2, the last m rows of f (deg(a)) are discarded; the output is an n-tuple of polynomials
(f1(λ), . . . fn(λ)) with coefficients in K1×n and an n-tuple d = (d1, . . . , dn) of nominal degrees such that

fk = f
(deg(a))
k

and
dk = d

(deg(a))
k ,

for 1 ≤ k ≤ n, where max(d) ≈ N/n.

BW3: This step receives an n-tuple of polynomials (f1(λ), . . . fn(λ)) with coefficients in K1×n and an
n-tuple d = (d1, . . . , dn) as input from BW2. For each fi(λ), 1 ≤ i ≤ n, compute wi ∈ KN as

wi = z(fi[deg(fi)])
T +B1z(fi[deg(fi)− 1])T + . . .+Bdeg(fi)z(fi[0])

T

=

deg(fi)∑

j=0

Bjz(fi[deg(fi)− j])T .

Note that this corresponds to an evaluation of the reverse of fi. To obtain a kernel vector of B, multiply wi
by B until B(ki+1)wi = 0, 0 ≤ ki ≤ (di − deg(fi)). Thus, Bkiwi is a kernel vector of B.

The block Wiedemann algorithm is a probabilistic algorithm. Therefore, it is possible that this com-
putation does not find a kernel vector for some fi(λ). For a probabilistic analysis of Coppersmith’s block
Wiedemann algorithm see [Kal95, Vil97a, Vil97b].

In practice, the kernel vectors can be computed efficiently by operating on all polynomials fi(λ) to-
gether. As in step BW2, all fi(λ) are written jointly as f(λ) with coefficients in Kn×n such that (f [k])i =
fi[k]. By applying Horner’s scheme, the kernel vectors can be computed iteratively with the help of a se-
quence {W (j)}max(d)

j=0 , W (j) ∈ KN×n using up to two matrix multiplications for each iteration as follows:

W (j) =





z · (f [0])T for j = 0,

z · (f [j])T +B ·W (j−1) for 0 < j ≤ deg(f),

B ·W (j−1) for deg(f) < j ≤ max(d).
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The kernel vectors of B are found during the iterative computation of W (max(d)) by checking whether an
individual column i ∈ {1, . . . , n} is nonzero in iteration k but becomes zero in iteration k + 1. Therefore,
column i of matrix W (k) is a kernel vector of B.

Each iteration step has a asymptotically time complexity of

O
(
Nn2 +NwBn

)
= O (N · (n+ wB) · n) .

Therefore, W (max(d)) for max(d) ≈ N/n can be computed with the asymptotic time complexity

O
(
N2 · (wB + n)

)
.

The output of BW3 and of the whole block Wiedemann algorithm are up to n kernel vectors of B.

4 The block Berlekamp–Massey algorithm

This section first introduces a tweak that allows to speed up computations of Coppersmith’s variant of the
Berlekamp–Massey algorithm. Later the parallelization of the algorithm is described.

4.1 Reducing the cost of the block Berlekamp–Massey algorithm

The j-th iteration of Coppersmith’s Berlekamp–Massey algorithm requires a matrix P (j) ∈ K(m+n)×(m+n)

such that the first n rows of P (j)H(j) are all zeros. The main idea of this tweak is to make P (j) have the
form

P (j) =

(
In ∗
0 Im

)
E(j),

where E(j) is a permutation matrix corresponding to a permutation φ(j) (the superscript will be omitted in
this section). Therefore, the multiplication P (j)f (j) takes only deg(f (j)) ·Mul(n,m, n) field operations (for
the upper right submatrix in P (j)).

The special form of P (j) also makes the computation of H(j) more efficient: The bottom m rows of
each coefficient are simply permuted due to the multiplication by P (j), thus

(P (j)f (j)[k])i = (f (j)[k])φ(i),

for n < i ≤ m + n, 0 < k ≤ deg(f (j)). Since multiplication by Q corresponds to a multiplication of the
bottom m rows by λ, it does not modify the upper n rows of the coefficients. Therefore, the bottom m rows
of the coefficients of f (j+1) can be obtained from f (j) as

(f (j+1)[k])i = (QP (j)f (j)[k − 1])i = (f (j)[k − 1])φ(i),

for n < i ≤ m+ n, 0 < k ≤ deg(f (j)). Since the bottom right corner of P (j) is the identity matrix of size
m, this also holds for

((f (j+1)a)[j + 1])i = ((QP (j)f (j)a)[j + 1])i = ((f (j)a)[j])φ(i).

Thus, H(j+1)
i for n < i ≤ m+ n can be computed as

H
(j+1)
i = ((f (j+1)a)[j + 1])i = ((QP (j)f (j)a)[j + 1])i = ((f (j)a)[j])φ(i) = H

(j)
φ(i).
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This means the last m rows of H(j+1) can actually be copied from H(j); only the first n rows of H(j+1)

need to be computed. Therefore the cost of computing any H(j>j0) is reduced to deg(f (j)) ·Mul(n, n,m).
The matrix P (j) can be assembled as follows: The matrix P (j) is computed using Algorithm 1. In this

algorithm a sequence of row operations is applied toM := H(j). The matrixH(j) has rankm for all j ≥ j0.
Therefore in the end the first n rows of M are all zeros. The composition of all the operations is P ; some of
these operations are permutations of rows. The composition of these permutations is E:

P (j)(E(j))−1 =
(
In ∗
0 F (j)

)
⇐⇒ P (j) =

(
In ∗
0 F (j)

)
E(j).

The algorithm by Coppersmith requires that the first n rows of P (j)H(j) are all zero (see [Cop94, 7]); there
is no condition for the bottom m rows. However, the first n rows of P (j)H(j) are all zero independently of
the value of F (j). Thus, F (j) can be replaced by Im without harming this requirement.

4.2 Parallelization of the block Berlekamp–Massey algorithm

The parallel implementation of the block Berlekamp–Massey algorithm on c nodes works as follows: In each
iteration step, the coefficients of f (j)(λ) are equally distributed over the computing nodes; for 0 ≤ i < c,
let S(j)

i be the set containing all indices of coefficients stored by node i during the j-th iteration. Each node
stores a copy of all coefficients of a(λ).

Due to the distribution of the coefficients, the computation of

H(j) = (f (j)a)[j] =

j∑

l=0

f (j)[l]a[j − l]

requires communication: Each node i first locally computes a part of the sum using only its own coefficients
S
(j)
i of f (j). The matrix H(j) is the sum of all these intermediate results. Therefore, all nodes broadcast

their intermediate results to the other nodes. Each node computes H(j) locally; Gaussian elimination is
performed on every node locally and is not parallelized over the nodes. Since only small matrices are
handled, this sequential overhead is negligibly small.

Also the computation of f (j+1) requires communication. Recall that

f (j+1) = QP (j)f (j), for Q =

(
In 0
0 λ · Im

)
.

Therefore each coefficient k is computed row-wise as

(f (j+1)[k])l =

{
((P (j)f (j))[k])l, for 0 < l ≤ n,
((P (j)f (j))[k − 1])l, for n < l ≤ m+ n.

Computation of f (j+1)[k] requires access to both coefficients k and (k + 1) of f (j). Therefore, commu-
nication cost is reduced by distributing the coefficients equally over the nodes such that each node stores
a continuous range of coefficients of f (j) and such that the indices in S(j)

i+1 always are larger than those in

S
(j)
i .

Due to the multiplication byQ, the degree of f (j) is increased at most by one in each iteration. Therefore
at most one more coefficient must be stored. The new coefficient obviously is the coefficient with highest
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degree and therefore must be stored on node (c−1). To maintain load balancing, one node i(j) is chosen in a
round-robin fashion to receive one additional coefficient; coefficients are exchanged between neighbouring
nodes to maintain an ordered distribution of the coefficients.

Observe, that only node (c−1) can check whether the degree has increased, i.e. whether deg(f (j+1)) =
deg(f (j))+1, and whether coefficients need to be redistributed; this information needs to be communicated
to the other nodes. To avoid this communication, the maximum nominal degree max(d(j)) is used to ap-
proximating deg(f (j)). Note that in each iteration all nodes can update a local list of the nominal degrees.
Therefore, all nodes decide locally without communication whether coefficients need to be reassigned: If
max(d(j+1)) = max(d(j)) + 1, node i(j) is computed as

i(j) = max(d(j+1)) mod c.

Node i(j) is chosen to store one additional coefficient, the coefficients of nodes i, for i ≥ i(j), are redis-
tributed accordingly.

Table 1 illustrates the distribution strategy for 4 nodes. For example in iteration 3, node 1 has been
chosen to store one more coefficient. Therefore it receives one coefficient from node 2. Another coefficient
is moved from node 3 to node 2. The new coefficient is assigned to node 3.

This distribution scheme does not avoid all communication for the computation of f (j+1): First all nodes
compute P (j)f (j) locally. After that, the coefficients are multiplied by Q. For almost all coefficients of f (j),
both coefficients k and (k − 1) of P (j)f (j) are stored on the same node, i.e. k ∈ S(j)

(i) and (k − 1) ∈ S(j)
(i) .

Thus, f (j+1)[k] can be computed locally without communication. In the example in Figure 2, this is the
case for k ∈ {0, 1, 2, 4, 5, 7, 9, 10}. Note that the bottom m rows of f (j+1)[0] and the top n rows of
f (j+1)[max(d(j+1))] are 0.

Communication is necessary if coefficients k and (k − 1) of P (j)f (j) are not on the same node. There
are two cases:

• In case k − 1 = max(S
(j+1)
i−1 ) = max(S

(j)
i−1), i 6= 1, the bottom m rows of (P (j)f (j))[k − 1] are sent

from node i− 1 to node i. This is the case for k ∈ {6, 3} in Figure 2. This case occurs if in iteration
j + 1 no coefficient is reassigned to node i− 1 due to load balancing.

• In case k = min(S
(j)
i ) = max(S

(j+1)
i−1 ), i 6= 1, the top n rows of (P (j)f (j))[k] are sent from node i

to node i − 1. The example in Figure 2 has only one such case, namely for coefficient k = 8. This
happens, if coefficient k got reassigned from node i to node i− 1 in iteration j + 1.

If max(d(j+1)) = max(d(j)), i.e. the maximum nominal degree is not increased during iteration step
j, only the first case occurs since no coefficient is added and therefore reassignment of coefficients is not
necessary.

The implementation of this parallelization scheme uses the Message Passing Interface (MPI) for com-
puter clusters and OpenMP for multi-core architectures. For OpenMP, each core is treated as one node in
the parallelization scheme. Note that the communication for the parallelization with OpenMP is not pro-
grammed explicitly since all cores have access to all coefficients; however, the workload distribution is
performed as described above. For the cluster implementation, each cluster node is used as one node in the
parallelization scheme. Broadcast communication for the computation of H(j) is implemented using a call
to the MPI_Allreduce function. One-to-one communication during the multiplication byQ is performed
with the non-blocking primitives MPI_Isend and MPI_Irecv to avoid deadlocks during communication.
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Both OpenMP and MPI can be used together for clusters of multi-core architectures. For NUMA systems
the best performance is achieved when one MPI process is used for each NUMA node since this prevents
expensive remote-memory accesses during computation.

The communication overhead of this parallelization scheme is very small. In each iteration, each node
only needs to receive and/or send data of total size O(n2). Expensive broadcast communication is only
required rarely compared to the time spent for computation. Therefore this parallelization of Coppersmith’s
Berlekamp–Massey algorithm scales well on a large number of nodes. Furthermore, since f (j) is distributed
over the nodes, the memory requirement is distributed over the nodes as well.

5 Thomé’s subquadratic version of the block Berlekamp–Massey algorithm

In 2002 Thomé presented an improved version of Coppersmith’s variation of the Berlekamp–Massey al-
gorithm [Tho02]. Thomé’s version is asymptotically faster: It reduces the complexity from O(N2) to
O(N log2(N)) (assuming thatm and n are constants). The subquadratic complexity is achieved by convert-
ing the block Berlekamp–Massey algorithm into a recursive divide-and-conquer process. Thomé’s version
builds the output polynomial f(λ) of BW2 using a binary product tree; therefore, the main operations in the
algorithm are multiplications of matrix polynomials. The implementation of Coppersmith’s version of the
algorithm is used to handle bottom levels of the recursion in Thomé’s algorithm, as suggested in [Tho02,
Section 4.1].

The main computations in Thomé’s version of the Berlekamp–Massey algorithm are multiplications of
matrix polynomials. The first part of this section will take a brief look how to implement these efficiently.
The second part gives an overview of the approach for the parallelization of Thomé’s Berlekamp–Massey
algorithm.

5.1 Matrix polynomial multiplications

In order to support multiplication of matrix polynomials with various operand sizes in Thomé’s Berlekamp–
Massey algorithm, several implementations of multiplication algorithms are used including Karatsuba,
Toom–Cook, and FFT-based multiplications. FFT-based multiplications are the most important ones be-
cause they are used to deal with computationally expensive multiplications of operands with large degrees.

Different kinds of FFT-based multiplications are used for different fields: The field F2 uses the radix-3
FFT multiplication presented in [Sch77]. For F16 the operands are transformed into polynomials over F169

by packing groups of 5 coefficients together. Then a mixed-radix FFT is applied using a primitive r-th root
of unity in F169 . In order to accelerate FFTs, it is ensured that r is a number without large (≥ 50) prime
factors.

F169 is chosen because it has several advantages. First, by exploiting the Toom-Cook multiplication,
a multiplication in F169 takes only 9log3 5 = 25 multiplications in F16. Moreover, by setting F16 =
F2[x]/(x

4 + x + 1) and F169 = F16[y]/(y
9 + x), reductions after multiplications can be performed ef-

ficiently because of the simple form of y9 + x. Finally, 169− 1 has many small prime factors and thus there
are plenty of choices of r to cover various sizes of operands.

5.2 Parallelization of Thomé’s Berlekamp–Massey algorithm

Thomé’s Berlekamp–Massey algorithm uses matrix polynomial multiplications and Coppersmith’s Berlekamp–
Massey algorithm as building blocks. The parallelization of Coppersmith’s version has already been ex-
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plained. Here the parallelization of the matrix polynomial multiplications is described on the example of the
FFT-based multiplication.

The FFT-based multiplication is mainly composed of 3 stages: forward FFTs, point-wise multiplications,
and the reverse FFT. Let f, g be the inputs of forward FFTs and f ′, g′ be the corresponding outputs; the
point-wise multiplications take f ′, g′ as operands and give h′ as output; finally, the reverse FFT takes h′ as
input and generates h.

For this implementation, the parallelization scheme for Thomé’s Berlekamp–Massey algorithm is quite
different from that for Coppersmith’s: Each node deals with a certain range of rows. In the forward and
reverse FFTs the rows of f , g, and h′ are independent. Therefore, each FFT can be carried out in a distributed
manner without communication. The problem is that the point-wise multiplications require partial f ′ but
full g′. To solve this each node collects the missing rows of g′ from the other nodes. This is done by using
the function MPI_Allgather. Karatsuba and Toom-Cook multiplication are parallelized in a similar way.

One drawback of this scheme is that the number of nodes is limited by the number of rows of the
operands. However, when B is very big, the runtime of BW2 should be very small compared to BW1 and
BW3 since it is subquadratic in N . In this case using a different, smaller cluster or a powerful multi-core
machine for BW2 might give a sufficient performance as suggested in [KAF+10]. Another drawback is,
that the divide-and-conquer approach and the recursive algorithms for polynomial multiplication require
much more memory than Coppersmith’s version of the Berlekamp–Massey algorithm. Thus Coppersmith’s
version might be a better choice on memory-restricted architectures or for very large systems.

6 Implementation of XL

This section gives an overview of the implementation of XL. Section 6.1 describes some tweaks that are
used to reduce the computational cost of the steps BW1 and BW2. This is followed by a description of the
building block for these two steps. The building blocks are explained bottom up: Section 6.2 describes the
field arithmetic on vectors of Fq; although the implementation offers several fields (F2, F16, and F31), F16

is chosen as a representative for the discussion in this section. The modularity of the source code allows to
easily extend the implementation to arbitrary fields. Section 6.3 describes an efficient approach for storing
the Macaulay matrix that takes its special structure into account. This approach reduces the memory demand
significantly compared to standard data formats for sparse matrices. Section 6.4 details how the Macaulay
matrix multiplication in the stages BW1 and BW3 is performed efficiently, Section 6.5 explains how the
multiplication is performed in parallel on a cluster using MPI and on a multi-core system using OpenMP.
Both techniques for parallelization can be combined on clusters of multi-core systems.

6.1 Reducing the computational cost of BW1 and BW3

To accelerate BW1, Coppersmith suggests in [Cop94] to use x = (Im|0) instead of making x a random
matrix. However, for the implementation described in this thesis, using x = (Im|0) turned out to drastically
reduce the probability of finding kernel vectors. Instead, a random sparse matrix is used for x with row
weight wx. This reduces the complexity of BW1 from O(N2(wB +m)) to O(N2wB +Nmwx).

A similar tweak can be used in BW3: Recall that the computations in BW3 can be performed iteratively
such that each iteration requires two multiplications z · (f [k])T and B · W (k−1). However, z is also a
randomly generated matrix, so it is deliberately made sparse to have row weight wz < n. This tweak
reduces the complexity of BW3 from O

(
N2 · (wB + n)

)
to O

(
N2 · (wB + wz)

)
.

In this implementation wx = wz = 32 is used in all cases.
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Notes. The tweaks for BW1 and BW3, though useful in practice, actually reduce the entropy of x and z.
Therefore, theoretical analyses of [Kal95, Vil97a, Vil97b] do no longer apply.

6.2 SIMD vector operations in F16

In this implementation, field elements of F16 are represented as polynomials over F2 with arithmetic modulo
the irreducible polynomial x4+x+1. Therefore one field element is stored using 4 bits e0, . . . , e3 ∈ {0, 1}
where each field element b ∈ F16 is represented as b =

∑3
i=0 eix

i. To save memory and fully exploit
memory throughput, two field elements are packed into one byte. Therefore the 128-bit SSE vector registers
are able to compute on 32 field elements in parallel. To fully exploit SSE registers, vector sizes of a multiple
of 32 elements are chosen whenever possible. In the following only vectors of length 32 are considered;
operations on longer vectors can be accomplished piecewise on 32 elements at a time.

Additions of two F16 vectors of 32 elements can be easily accomplished by using a single XOR instruc-
tion of the SSE instruction set.

Scalar multiplications are more expensive. Depending on the microarchitecture, two different imple-
mentations are used: processors which offer the SSSE3 extension can profit from the advanced PSHUFB
instruction; on all other SSE architectures a slightly slower version is used which is based on bitshift opera-
tions and logical operations.

General (non-PSHUFB) scalar multiplication: Scalar multiplication by x, x2 and x3 can be implemented
using a small number of bit-operations, e.g. multiplication by x can be performed as:

(a3x
3 + a2x

2 + a1x+ a0) · x = a3(x+ 1) + a2x
3 + a1x

2 + a0x

= a2x
3 + a1x

2 + (a0 + a3)x+ a3

Seen from the bit-representation, multiplication by x results in shifting bits 0,1, and 2 by one position
to the left and adding (XOR) bit 3 to positions 0 and 1. This sequence of operations can be executed on 32
values in an SSE vector register in parallel using 7 bit-operations as shown in figure 3. Similar computations
give the multiplication by x2 and x3 respectively.

Therefore multiplying a vector a ∈ F32
16 by an arbitrary scalar value b ∈ F16 can be decomposed to

adding up the results of a · xi, i ∈ [0, 3] for all bits i of b that are set to 1. The number of bit-operations
varies with the actual value of b.

Scalar multiplication using PSHUFB: The PSHUFB (Packed Shuffle Bytes) instruction was introduced
by Intel with the SSSE3 instruction set extension in 2006. The instruction takes two byte vectors A =
(a0, a1, . . . , a15) and B = (b0, b1, . . . , b15) as input and returns C = (ab0 , ab1 , . . . , ab15). In case the
top bit of bi is set, ci is set to zero. With this instructions the scalar multiplication can be implemented
using a lookup table as follows: For F16 the lookup table L contains 16 entries of 128-bit vectors Li =
(0 · i, 1 · i, x · i, (x + 1) · i, . . . ), i ∈ F16. Given a vector register A that contains 16 F16 elements, one in
each byte slot, the scalar multiplication A · b, b ∈ F16 is computed as A · b = PSHUFB(Lb, A).

Since in the implementation each input vector register contains 32 packed elements, two PSHUFB in-
structions have to be used and the inputs need to be unpacked using shift and mask operations accordingly
as shown in figure 4. Using the PSHUFB instruction, the scalar multiplication needs 7 operations for any
input value b with the extra cost of accessing the lookup table.
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6.3 Exploiting the structure of the Macaulay matrix

Recall that in XL a system A of m quadratic equations in n variables over a field Fq is linearized by
multiplying the equations by each of the T = |T (D−2) | monomials with degree smaller than or equal to
D−2. The resulting systemR(D) is treated as a linear system using the monomials as independent variables.
This linear system is represented by a sparse matrix that consists of T row blocks of m rows where each row
in a row block is associated with one row in the underlying system A. The entries in these blocks have the
same value as the entries in A and the column positions of the entries are all the same for any line in one
row block.

The resulting matrix has the structure of a Macaulay matrix. Since the matrix does not have a square
structure as demanded by the Wiedemann algorithm, rows are dropped randomly from the matrix until the
resulting matrix has a square shape. Let each equation in A have w coefficients. Therefore each row in the
Macaulay matrix has a weight of at most w.

The Macaulay matrix can be stored in a general sparse-matrix format in memory. Usually for each
row in a sparse matrix the non-zero entries are stored alongside with their column position. In a field Fq a
Macaulay matrix with a row-weight of at most w has about w q−1

q non-zero entries per row. For a Macaulay
matrix of N rows such a format would need at least N · w q−1

q · (bvalue + bindex) bits, bvalue and bindex
denoting the number of bits necessary to store the actual value and the column index respectively.

Nevertheless, in a Macaulay matrix all entries are picked from the same underlying quadratic system.
Furthermore, the column indices in each row repeat for the up tom consecutive rows spanning over one row
block.

Therefore, memory can be saved by storing the values only once as a dense matrix according to the
underlying quadratic system. This needs m · w · bvalue bits of memory. Furthermore, for each row block
the column positions of the entries need to be stored. This takes T · w · bindex bits. Furthermore, it must be
stored to which row of the quadratic system each row in the square Macaulay matrix is referring to—since
a bunch of rows has been dropped to make the get a square matrix. Therefore an index to each row of the
quadratic system is stored for each row of the Macaulay matrix. This takes N · bsys−index bits of memory.

All in all, the memory demand of the sparse Macaulay matrix can be compressed tom ·w ·bvalue+T ·w ·
bindex +N · bsys−index bits which reduces the memory demand compared to a sparse matrix storage format
significantly. The disadvantage of this storage format is that entries of the underlying quadratic system A
that are known to be zero cannot be skipped as it would be possible when using a standard sparse-matrix
format. This may give some computational overhead during the matrix operations. However, this allows to
assume that the Macaulay matrix has the fixed row-weight w for each row regardless of the actual values of
the coefficients in A for the reminder of this paper.

Figure 5 shows a graph of the memory demand for several arbitrary system sizes over F16. Given a
certain memory size, e.g. 16 GB, systems of about two more equations can be computed in RAM by using
the compact storage format.

Note that the column positions can also be recomputed dynamically for each row block instead of storing
them explicitly. However, recomputation increases the computational cost significantly while only a rela-
tively small memory amount is necessary to store precomputed column positions. Since this algorithm is
rather bound by computation than by memory, it is more efficient to store the values instead of recomputing
them on demand.
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6.4 Macaulay matrix multiplication in XL

Recall that in XL stage BW1 of the block Wiedemann algorithm is an iterative computation of

a[i] = (xT · (B ·Biz))T , 0 ≤ i ≤ N

m
+
N

n
+O(1)

and stage BW3 iteratively computes

W (j) = z · (f [j])T +B ·W (j−1)

where B is a Macaulay matrix, x and z are sparse matrices, and a[i], f [k] are dense matrices.
Figures 6 and 7 show pseudo-code for the iteration loops. The most expensive part in the computation

of stages BW1 and BW3 of XL is a repetitive multiplication of the shape

tnew = B · told

where tnew, told ∈ KN×n are dense matrices and B ∈ KN×N is a sparse Macaulay matrix of row weight
w.

Due to the row-block structure of the Macaulay matrix, there is a guaranteed number of entries per row
(i.e. the row weight w) but a varying number of entires per column, ranging from just a few to more than
2w. Therefore the multiplication is computed in row-order in a big loop over all row indices.

For F16 the field size is significantly smaller than the row weight. Therefore, the number of actual
multiplications for a row r can be reduced by summing up all row-vectors of told which are to be multiplied
by the same field element and perform the multiplication on all of them together. A temporary buffer
bi, i ∈ F16 of vectors of length n is used to collect the sum of row vectors that are multiplied by i. For all
entries Br,c row c of told is added to bBr,c . Finally b is reduced by computing

∑
i · bi, i 6= 0, i ∈ F16, which

gives the result for row r of tnew.
With the strategy explained so far, computing the result for one row of B takes w + 14 additions and

14 scalar multiplications (there is no need for the multiplication of 0 and 1, see [Sch11, Statement 8], and
for the addition of 0, see [Pet11, Statement 10]). This can be further reduced by decomposing each scalar
factor into the components of the polynomial that represents the field element. Summing up the entries in bi
according to the non-zero coefficients of i’s polynomial results in 4 buckets which need to be multiplied by
1, x, x2, and x3 (multiplying by 1 can be omitted once more). This reduces 14 scalar multiplications from
before to only 3 multiplications on the cost of 22 more additions. All in all the computation on one row of
B (row weight w) on Fpn costs w+2(pn− n− 1) + (n− 1) additions and n− 1 scalar multiplications (by
x, x2, . . . , xn−1). For F16 this results in w + 25 additions and 3 multiplications per row.

In general multiplications are more expensive on architectures which do not support the PSHUFB-
instruction than on those which do. Observe that in this case the non-PSHUFB multiplications are about
as cheep (rather slightly cheaper) since the coefficients already have been decomposed to the polynomial
components which gives low-cost SIMD multiplication code in either case.

6.5 Parallel Macaulay matrix multiplication in XL

The Parallelization of the Macaulay matrix multiplication of stages BW1 and BW3 is implemented in two
ways: On multi-core architectures OpenMP is used to keep all cores busy, on cluster architectures MPI is
used to communicate between the cluster nodes. Both approaches can be combined for clusters of multi-core
nodes.
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The efficiency of a parallelization of the Macaulay matrix multiplication depends on two factors: The
workload must be balanced over all computing units (cores and/or nodes respectively) to fully exploit all
available processor cores and the communication overhead must be small.

The strategy of the workload distribution is similar for both OpenMP and MPI. Figure 8 shows an
example of a Macaulay matrix. Recall that each row has the same number of entries from the original
quadratic system. Due to the structure of the matrix and the low row weight a splitting into column blocks
would reduce load balancing and performance drastically. Therefore the workload is distributed by assigning
blocks of rows of the Macaulay matrix to the computing units.

If the matrix is split into blocks of equal size, every unit has to compute the same number of multiplica-
tions. Nevertheless, due to the structure of the Macaulay matrix the runtime of the computing units may vary
slightly: in the bottom of the Macaulay matrix it is more likely that neighbouring row blocks have non-zero
entries in the same column. Therefore it is more likely to find the corresponding row of told in the caches
and the computations can be finished faster than in the top of the Macaulay matrix. This imbalance may be
addressed by dynamically assigning row ranges depending on the actual computing time of each block.

6.5.1 Parallelization for shared-memory systems: OpenMP

OpenMP offers a straightforward way to parallelize data-independent loops by adding an OpenMP compiler
directive in front of a loop. This allows to easily assign blocks of rows of the Macaulay matrix to the
processor cores: The outer loop which is iterating over the rows of the Macaulay matrix is parallelized using
the directive “#pragma omp parallel for”. This automatically assigns a subset of rows to each
OpenMP thread.

It is not easy to overcome the above mentioned workload imbalance induced by caching effects since
OpenMP does not allow to split row ranges into a fixed number of blocks of different sizes. The scheduling
directive “schedule(guided)” gives a fair workload distribution; however, each processor core obtains
several row ranges which are not spanning over consecutive rows. The outcome of this is a loss in cache
locality. Thus the workload is fairly distributed but full performance is not achieved due to an increased
number of cache misses. In fact, using “schedule(guided)” does not result in better performance
than “schedule(static)”. To achieve best performance the row ranges would need to be distributed
according to the runtime of earlier iterations; however, it is not possible to express this with OpenMP in a
straightforward way. Experiments showed that this results in a loss in performance of up to 5%.

Running one thread per virtual core on SMT architectures might increase the ALU exploitation but puts
a higher pressure on the processor caches. Whether the higher efficiency outweighs the higher pressure
on the caches needs to be tried out by experiments on each computer architecture for each problem size.
Running two threads per physical core, i.e. one thread per virtual core, on an Intel Nehalem CPU increased
performance by about 10% for medium sized systems. However, this advantage decreases for larger systems
due to the higher cache pressure.

An OpenMP parallelization on UMA systems encounters no additional communication cost although the
pressure on shared caches may be increased. On NUMA systems data must be distributed over the NUMA
nodes in a way that takes the higher cost of remote memory access into account. Each row of the target
matrix tnew is touched only once while the rows in the source matrix told may be touched several times.
Therefore on NUMA systems the rows of told and tnew are placed on the NUMA node which accesses them
first during the computation. This gives reasonable memory locality and also distributes memory accesses
fairly between the memory controllers.
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6.5.2 Parallelization for cluster systems: MPI

On an MPI cluster the workload is distributed similar to OpenMP by splitting the Macaulay matrix into
blocks of rows. Since the computation on one row of the Macaulay matrix might depend on any of the rows
of matrix told, the full matrix told needs to be available on all MPI nodes. This can be achieved by a blocking
all-to-all communication after each iteration step of stages BW1 and BW3.

If B were a dense matrix, such a communication would take only a small portion of the overall runtime.
But since B is a sparse Macaulay matrix which has a very low row weight, the computation time for one
single row of B takes only a small amount of time. In fact this time is in the order of magnitude of the time
that is necessary to send one row of tnew to all other nodes during the communication phase. Therefore this
simple workload-distribution pattern gives a large communication overhead.

This overhead is hidden when communication is performed in parallel to computation. Todays high-
performance network interconnects are able to transfer data via direct memory access (DMA) without inter-
action of the CPU. The computation of tnew can be split into several parts; during computation on one part,
previously computed results are distributed to the other nodes and therefore are available at the next iteration
step. Under the condition that computation takes more time than communication, the communication over-
head can almost entirely be hidden. Otherwise speedup and therefore efficiency of cluster parallelization is
bound by communication cost.

The version 2.2 of the MPI standard offers non-blocking communication primitives for point-to-point
communication and gives easy access to the DMA capabilities of high-performance interconnects. Unfor-
tunately there is no support for non-blocking collectives. Therefore a non-blocking MPI_Iallgather
function was implemented that uses several non-blocking MPI_Isend and MPI_Irecv instructions. To
ensure progress of the non-blocking communication, the MPI function MPI_Test must be called periodi-
cally for each transfer.

Apart from hiding the communication overhead it is also possible to totally avoid all communication by
splitting tnew into independent column blocks. Therefore three communication strategies have been imple-
mented which allow to either avoid all communication during stages BW1 and BW3 or to do computation
and communication in parallel. All three approaches have certain advantages and disadvantages which make
them suitable for different scenarios. The following paragraphs explain the approaches in detail:

1. Operating on one shared column block of told and tnew:

For this approach the Macaulay matrix is split into blocks of rows in the same way as for the OpenMP
parallelization. Each row of tnew is only touched once per iteration. Therefore each row can be send
to the other cluster nodes immediately after the computation on it has finished.

However, sending many small data packets has a higher overhead than sending few big packets. There-
fore, the results of several consecutive rows are computed and sent together in an all-to-all communi-
cation: First the result of k rows is computed. Then a non-blocking communication for these k rows
is initiated. While data is transfered, the next k rows are computed. At the end of each iteration step
the nodes have to wait for the transfer of the last k rows to be finished; the last communication step is
blocking.

Finding the ideal number of rows in one packet for best performance poses a dilemma: On the one
hand if k is too small, the communication overhead is increased since many communication phases
need to be performed. On the other hand since the last communication step is blocking, large packages
result in a long waiting time at the end of each iteration. Finding the best choice of the package size
can be achieved by benchmarking the target hardware with the actual program code.
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2. Operating on two shared column blocks of told and tnew:

Both small packet size and blocking communication steps can be avoided by splitting the matrices
told and tnew into two column blocks told,0 and told,1 as well as tnew,0 and tnew,1. The workload is
distributed over the nodes row-wise as before. First each node computes the results of its row range for
column block tnew,0 using rows from block told,0. Then a non-blocking all-to-all communication is
initiated which distributes the results of block tnew,0 over all nodes. While the communication is going
on, the nodes compute the results of block tnew,1 using data from block told,1. After computation on
tnew,1 is finished, the nodes wait until the data transfer of block tnew,0 has been accomplished. Ideally
communication of block tnew,0 is finished earlier than the computation of block tnew,1 so that the
results of block tnew,1 can be distributed without waiting time while the computation on block tnew,0
goes on with the next iteration step.

One disadvantage of this approach is that the entries of the Macaulay matrix need to be loaded twice
per iteration, once for each block. This gives a higher memory contention and more cache misses than
a single column block version. However, these memory accesses are sequential. Therefore it is likely
that the access pattern can be detected by the memory interface and that the data is prefetched into the
caches.

Furthermore the width of the matrices told and tnew has an impact on the performance of the whole
block Wiedemann algorithm. For BW1 and BW3 there is no big impact on the number of field-
element multiplications which need to be performed since the number of iterations is decreased while
the block width is increased; but altering the block size has an effect on memory efficiency due to
cache effects. For the Berlekamp–Massey algorithm in step BW2 the width directly influences the
number of multiplications, increasing the block width also increases the computation time.

Therefore computing on two column blocks of told and tnew forces to either compute on a smaller
block size (since told and tnew are split) or to increase the total matrix width; a combination of both is
possible as well. Reducing the block size might impact the efficiency due to memory effects; enlarging
the total matrix width increases the runtime of the Berlekamp–Massey algorithm. The best choice for
the block size and therefore the matrix width must be determined by benchmarking.

3. Operating on independent column blocks of told and tnew:

Any communication during stages BW1 and BW3 can be avoided by splitting the matrices told and
tnew into independent column blocks for each cluster node. The nodes compute over the whole
Macaulay matrix on a column stripe of told and tnew. All computation can be accomplished locally;
the results are collected at the end of the computation of these stages.

Although this is the most efficient parallelization approach when looking at communication cost, the
per-node efficiency drops drastically with higher node count: For a high node count, the impact of the
width of the column stripes of told and tnew becomes even stronger than for the previous approach.
Therefore this approach only scales well for small clusters. For a large number of nodes, the efficiency
of the parallelization declines significantly.

Another disadvantage of this approach is that all nodes must store the whole Macaulay matrix in their
memory. For large systems this is may not be feasible.

All three parallelization approaches have advantages and disadvantages; the ideal approach can only be
found by testing each approach on the target hardware. For small clusters approach 3 might be the most
efficient one although it looses efficiency due to the effect of the width of told and tnew. The performance of
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approach 1 and approach 2 depends heavily on the network configuration and the ratio between computation
time and communication time.

MPI does not offer the right communication primitives for the demands of a parallel implementation of
XL. The blocking collective operations are fine for computation-bound applications; communication-bound
sparse Macaulay matrix multiplication requires highly efficient non-blocking collective operations.

The structure of the Macaulay matrix accounts for further loss in parallelization efficiency: As described
earlier even though the number of entries is equal in each row of the Macaulay matrix, due to memory
caching effects the runtime might be different in different areas of the matrix. Runtime differences between
cluster nodes can be straightened out by assigning a different amount of rows to each cluster node. Never-
theless, the parallelization approach 1 must initiate communication several times within one iteration step.
Also approaches 2 and 3 have to call the MPI_Test function every once in a while during computation to
guarantee communication progress. Due to the structure of the Macaulay matrix, these calls to the MPI-API
occur out of sync between the nodes which might result in performance penalty.

Furthermore in case the cluster nodes are multi-core systems and OpenMP is used for local paralleliza-
tion, interrupting the computation loop and resuming computation in another row range will have an impact
on caching effects. In case the cluster nodes are NUMA systems, reducing NUMA effects becomes more
challenging. Nevertheless, this can be avoided by running several MPI processes on each cluster node, one
for each NUMA node; this in turn breaks the non-blocking communication scheme due to the lack of free
background communication on most shared memory systems.

All parallelization approaches stated above are based on the memory-efficient Macaulay matrix repre-
sentation described in Section 6.3. Alternatively the compact data format can be dropped for the favor of
a standard sparse matrix data format. This gives the opportunity to optimize the structure of the Macaulay
matrix for cluster computation. For example, a Macaulay matrix can be partitioned for parallel sparse
matrix-vector multiplication using the Mondriaan partitioner of Bisseling, Fagginger Auer, Yzelman, and
Vastenhouw available at [BFYV10]. Due to the low row-density, a repartitioning of the Macaulay matrix
provides a better communication scheme: The data amount for communication is reduced compared to the
current approaches and the costly all-to-all communication can be replaced by a few one-to-one communi-
cation paths. Even though this approach does not have an impact on small cluster sizes where efficiency
and scalability are already very high, it becomes very important for large cluster sizes when the current
communication scheme reaches its limits. This optimization for the communication scheme is not yet im-
plemented; currently this parallel implementation of XL focuses on computational efficiency and memory
efficiency and delivers a high performance on small cluster sizes. Optimizing the communication scheme
and evaluating the trade-off between communication cost, memory demand, and computational efficiency is
a major topic of future research.

All in all there are many pitfalls which reduce the efficiency of XL for a parallel implementation. The
next section presents the performance numbers of the current implementation and gives an insight on how
much these factors impact performance, scalability, and efficiency of a parallel XL computation.

7 Experimental results

This section gives an overview of the performance and the scalability of the XL implementation described
in the previous sections. Experiments have been carried out on two computer systems: on a 48-core NUMA
system and on a four node Infiniband cluster. Table 2 lists the key features of these systems.

To reduce the parameter space of the experiments, m was restricted to the smallest value allowed de-
pending on n, thus m = n. On the one hand, the choice of m has an impact on the number of iterations of
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BW1: a larger m reduces the number of iterations. On the other hand, a larger m increases the amount of
computations and thus the runtime of BW2. Therefore, fixing m to m = n does not result in the shortest
overall runtime of all three steps of the block Wiedemann algorithm.

Three different experiments were executed: First a quadratic system of a moderate size with 16 equations
and 14 variables was used to show the impact of block sizes n and m = n on the block Wiedemann
algorithm. The same system was then used to measure the performance of the three parallelization strategies
for the large matrix multiplication in the steps BW1 and BW3. The third experiment used a second quadratic
system with 18 equations and 16 variables to measure the performance of the parallelization on the cluster
system with a varying number of cluster nodes and on the NUMA system with a varying number of NUMA
nodes. The following paragraphs give the details of these experiments.

7.1 Impact of the block size

The impact of the block size of the block Wiedemann algorithm on the performance of the implementation
was measured using a quadratic system with 16 equations and 14 variables over F16. In this case, the degree
D0 for the linearization is 9. The input for the algorithm is a square Macaulay matrix B with N = 817190
rows (and columns) and row weight wB = 120.

Given the fixed size of the Macaulay matrix and m = n, the number of field operations for BW1
and BW2 is roughly the same for different choices of the block size n since the number of iterations is
proportional to 1/n and the number of field operations per iteration is roughly proportional to n. However,
the efficiency of the computation varies depending on n. The following paragraphs investigate the impact
of the choice of n on each part of the algorithm.

Figure 9 shows the runtime for block sizes 32, 64, 128, 256, 512, and 1024. During the j-th iteration
step of BW1 and BW3, the Macaulay matrix is multiplied with a matrix t(j−1) ∈ FN×n16 . For F16 each row
of t(j−1) requires n/2 bytes of memory. In the cases m = n = 32 and m = n = 64 each row thus occupies
less than one cache line of 64 bytes. This explains why the best performance in BW1 and BW3 is achieved
for larger values of n. The runtime of BW1 and BW3 is minimal for block sizes m = n = 256. In this
case one row of t(j−1) occupies two cache lines. The reason why this case gives a better performance than
m = n = 128 might be that the memory controller is able to prefetch the second cache line. For larger
values of m and n the performance declines probably due to cache saturation.

According to the asymptotic time complexity of Coppersmith’s and Thomé’s versions of the Berlekamp–
Massey algorithm, the runtime of BW2 should be proportional to m and n. However, this turns out to be the
case only for moderate sizes of m and n; note the different scale of the graph in Figure 9 for a runtime of
more than 2000 seconds. For m = n = 256 the runtime of Coppersmith’s version of BW2 is already larger
than that of BW1 and BW3, form = n = 512 andm = m = 1024 both versions of BW2 dominate the total
runtime of the computation. Thomé’s version is faster than Coppersmith’s version for small and moderate
block sizes. However, by doubling the block size, the memory demand of BW2 roughly doubles as well;
Figure 10 shows the memory demand of both variants for this experiment. Due to the memory–time trade-
off of Thomé’s BW2, the memory demand exceeds the available RAM for a block size of m = n = 512
and more. Therefore memory pages are swapped out of RAM onto hard disk which makes the runtime of
Thomé’s BW2 longer than that of Coppersmith’s BW2.

7.2 Performance of the Macaulay matrix multiplication

This experiment investigates which of the three different approaches for the cluster parallelization of Macaulay
matrix multiplication gives the best performance. Figure 11 shows the runtime of each of the three ap-
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proaches for BW1 and BW3 for an execution on four cluster nodes; the same system size was used as in the
previous experiment. Since this experiment is only concerned about the parallelization of BW1 and BW3
and not about the performance of BW2, a block size of m = n = 256 was used.

Recall that in each iteration step j, the first approach distributes the workload for the Macaulay matrix
multiplication row-wise over the cluster nodes and sends the results of the multiplication in the background
of ongoing computation. This approach is called “1 block” in Figure 11. The second approach splits the
workload similarly to the first approach but also splits t(j−1) and t(j) into two column blocks. The data of
one column block is sent in the background of the computation of the other column block. Since n = 256,
each of the two column blocks has a width of 128 elements. This approach is called “2 blocks” in the
figure. The last approach splits the matrices t(j−1) and t(j) into as many column blocks as there are cluster
nodes; each node computes independently on its own column block. The results are collected when the
computations are finished. In this case the width of the column blocks is only 64 for 4 cluster nodes due to
the fixed n = 256. This approach is called “independent blocks” in the figure.

The first approach requires blocking communication to send the last packet of rows. Therefore this
approach has a longer runtime than the other two approaches. The approaches “2 blocks” and “independent
blocks” have a similar runtime; the runtime of “independent blocks” is slightly longer since it uses a smaller
block size for each of the column blocks. Note that the performance of this approach would be better for
larger block sizes; however, this requires a larger (total) block size n and thus the benefits are outweighed
by a longer runtime of BW2.

The approach “2 blocks” was used for the scalability tests that are described in the next paragraphs since
it has a good performance for up to 4 cluster nodes and uses a fixed number of column blocks independent
of the cluster size. Furthermore it uses a larger column-block size for a given n than the third approach with
several independent column blocks.

7.3 Scalability experiments

The scalability was measured using a quadratic system with 18 equations and 16 variables over F16. The
operational degree D0 for this system is 10. The square Macaulay matrix B has a size of N = 5311735
rows and columns; the row weight is wB = 153.

For this experiment, the implementation of the block Wiedemann algorithm ran on 1, 2, and 4 nodes of
the cluster and on 1 to 8 CPUs of the NUMA system. Figure 12 gives an overview of the runtime of each
step of the algorithm. Since this experiment is not concerned about peak performance but about scalability,
a block size of m = n = 256 is used. The runtime on one cluster node is shorter than on one NUMA node
since each cluster has more computing power than one NUMA node (see Table 2). At a first glance the
implementation scales nicely: doubling of the core count roughly halves the runtime.

Given the runtime T1 for one computing node and Tp for p computing nodes, the parallel efficiency Ep
on the p nodes is defined as Ep = T1/pTp. Figures 13 and 14 give a closer look on the parallel speedup and
the parallel efficiency of BW1 and BW3; the performance of BW3 behaves very similarly to BW1 and thus
is not depicted in detail. These figures show that BW1 and Coppersmith’s BW2 indeed have a nice speedup
and efficiency on 2 and 4 cluster nodes. The parallelization of Thomé’s BW2 however has only a moderate
efficiency. In particular the polynomial multiplications require a more efficient parallelization approach.

On the NUMA system, BW1 achieves a good efficiency on up to 8 NUMA nodes. The workload was
distributed such that each CPU socket was filled up with OpenMP threads as much as possible. Therefore
in the case of two NUMA nodes (12 threads) the implementation achieves a high efficiency since a memory
controller on the same socket is used for remote memory access and the remote memory access has only
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moderate cost. For three and more NUMA nodes, the efficiency declines to around 80% due to the higher
cost of remote memory access between different sockets.

Also on the NUMA system the parallelization of Thomé’s BW2 achieves only a moderate efficiency.
The parallelization scheme used for OpenMP does not scale well for a large number of threads.

The parallelization of Coppersmith’s version of BW2 scales almost perfectly on the NUMA system. The
experiment with this version of BW2 is performed using hybrid parallelization by running one MPI process
per NUMA node and one OpenMP thread per core. The blocking MPI communication happens that rarely
that it does not have much impact on the efficiency of up to 8 NUMA nodes.

8 Some Current Results and Summary

We tabulate results for some examples; so far the scaling is in accordance with our estimate that XL with
Wiedemann is the best way to solve large generic systems. Specifically, we compare time and memory
consumption between XL and F4 using Figure 15. We use data of our 48-core machine for XL, so the
F4-data of time is divided by 48. Although we do not have F4-data for n > 25, it seems that XL will stably
outperform F4 in both time and memory for n > 23.

Running time in seconds for XL with block Wiedemann for F16, m/n = 2

colossus2 giants
m n D0 bw1 bw2 bw3 total bw1 bw2 bw3 total
42 21 5 3 13 2 19 4 5 2 11
44 22 6 116 96 68 282 120 90 77 290
46 23 6 196 115 113 427 202 112 120 438
48 24 6 321 165 184 674 334 144 197 679
50 25 6 538 202 306 1050 546 189 315 1054
52 26 6 853 294 476 1628 864 232 494 1595
54 27 6 1336 333 758 2434 1372 305 779 2463
56 28 6 2086 486 1166 3745 2117 390 1188 3704
58 29 6 3197 523 1785 5516 3229 508 1803 5550
60 30 7 143325 4638 80198 228229 142239 3625 78034 223965

colossus3
42 21 5 3 12 2 17
44 22 6 102 87 54 244
46 23 6 172 101 92 367
48 24 6 289 139 156 586
50 25 6 475 176 251 904
52 26 6 756 202 408 1378
54 27 6 1193 271 629 2096
56 28 6 1866 330 984 3183
58 29 6 2836 373 1506 4719
60 30 7 124589 2746 67594 194984
62 31 7 145693 7640 105084 258518
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Running time in seconds for XL with block Wiedemann for F2, m = n

colossus2 giants
m n D0 bw1 bw2 bw3 total bw1 bw2 bw3 total
25 25 6 15 40 9 66 26 45 22 98
26 26 6 25 60 14 102 38 74 29 146
27 27 6 41 95 23 161 71 95 44 217
28 28 6 66 137 37 244 110 145 73 337
29 29 6 107 197 59 368 163 214 107 495
30 30 7 2395 3215 1285 6918 3529 3826 1911 9314
31 31 7 4124 5168 2161 11481 5987 6132 3201 15383
32 32 7 6864 8129 3610 18641 10214 9761 5412 25469
33 33 7 11182 12594 5969 29792
34 34 7 18195 19286 9644 47184

colossus3
29 29 6 89 148 50 293
30 30 7 2013 1913 1109 5062
31 31 7 3428 2998 1839 8300
32 32 7 5753 4657 3136 13590
33 33 7 9482 7076 5077 21692
34 34 7 15494 10853 8282 34699
35 35 7 24793 7430 13214 45571

Running time in seconds for XL with block Wiedemann for F16, m− n = 2

colossus2 giants
m n D0 bw1 bw2 bw3 total bw1 bw2 bw3 total
15 13 8 21 45 12 78 19 44 13 78
16 14 9 374 244 219 839 338 215 204 761
17 15 9 1038 457 599 2096 931 340 548 1824
18 16 10 19809 2426 11071 33316 17188 1753 9953 28919
19 17 10 53543 4177 30682 88418 47627 2807 26573 77051

colossus3
15 13 8 18 45 10 73
16 14 9 289 210 161 663
17 15 9 798 330 441 1572
18 16 10 15432 1485 8570 25501
19 17 10 41618 2518 22838 66995

Remarks: The machine colossus2 is a machine with 4 Opteron 6174 CPUs (48 cores) and 256GB of
RAM; with a similar machine with only 64GB of RAM, which a local vendor just sent a quote to our
institute for US$6,000, we could compute a solution from 30 variables in 60 equations in F16 in 2.6 days
(using about 257 field multiplications). The giants cluster is an infiniband-connected small cluster with 4
dual Xeon E5620 (2 quad-core 2.4GHz Westmeres) and 36GB of RAM each. The “colossus3” is the same
machine as colossus2 with the CPUs replaced by the newer Bulldozer Opteron 6276 CPUs (32 pairs of
2.3GHz sesqui-cores, pseudo-cores sharing vector units).
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Future Work: The programs we have run on other fields with various degree of optimization and speed.
We expect to push these results to larger clusters, larger examples to verify the general validity of our ap-
proach, and contribute this work to a free software library when we have a sufficient coverage of parameters
and base field arithmetics.
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input : H(j) ∈ K(m+n)×m

a list of nominal degrees d(j)

output: P (j) ∈ K(m+n)×(m+n)

E(j) ∈ K(m+n)×(m+n)

1 M ← H(j), P ← Im+n, E ← Im+n;
2 sort the rows of M by the nominal degrees in decreasing order and apply the same permutation to
P (j) and E(j);

3 for k = 1→ m do
4 for i = (m+ n+ 1− k) downto 1 do
5 if Mi,k 6= 0 then
6 v(M) ←Mi, v(P ) ← Pi, v(E) ← Ei;
7 break;

8 for l = i+ 1 to (m+ n+ 1− k) do
9 Ml−1 ←Ml, Pl−1 ← Pl, El−1 ← El;

10 M(m+n+1−k) ← v(M), P(m+n+1−k) ← v(P ), E(m+n+1−k) ← v(E);
11 for l = 1 to (m+ n− k) do
12 if Ml,k 6= 0 then
13 Ml ←Ml − v(M) · (Ml,k/v(M)k);
14 Pl ← Pl − v(P ) · (Ml,k/v(M)k);

15 P (j) ← P ;
16 E(j) ← E;

Figure 1: Gaussian Elimination in Coppersmith’s Berlekamp–Massey algorithm

0
0

P (j)f (j)

f (j+1)

S
(j)
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S
(j+1)
i

012345678910 k

node 3 node 2 node 1 node 0

Figure 2: Example for the communication between 4 nodes. The top n rows of the coefficients are
colored in blue, the bottom m rows are colored in red.
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INPUT GF(16) vector A
OUTPUT A * x

mask_a3 = 1000|1000|1000| ...
mask_a2a1a0 = 0111|0111|0111| ...

a3 = A AND mask_a3
tmp = A AND mask_a2a1a0
tmp = tmp << 1
new_a0 = a3 >> 3
tmp = tmp XOR new_a0
add_a1 = a3 >> 2
ret = tmp XOR add_a1

RETURN ret

Figure 3: Pseudocode for scalar multiplication by x.

INPUT GF(16) vector A
GF(16) element b

GLOBAL lookup table L
OUTPUT A * b

mask_low = 00001111|00001111|00001111|...
mask_high = 11110000|11110000|11110000|...

low = A AND mask_low
high = A AND mask_high
low = PSHUFB(L[b], low)
high = high >> 4
high = PSHUFB(L[b], high)
high = high << 4
ret = low OR high

RETURN ret

Figure 4: Pseudocode for scalar multiplication using PSHUFB.
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Figure 5: Memory demand of XL for several system sizes using F16 in standard and compact represen-
tation.

INPUT: macaulay_matrix<N, N> B;
sparse_matrix<N, n> z;

matrix<N, n> t_new, t_old;
matrix<m, n> a[N/m + N/n + O(1)];
sparse_matrix<m, N, weight> x;

x.rand();
t_old = z;
for (unsigned i = 0; i <= N/m + N/n + O(1); i++)
{

t_new = B * t_old;
a[i] = x * t_new;
swap(t_old, t_new);

}
RETURN a

Figure 6: Top-level iteration loop for BW1.
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INPUT: macaulay_matrix<N, N> B;
sparse_matrix<N, n> z;
matrix_polynomial f;

matrix<N, n_sol> t_new, t_old;
matrix<N, n_sol> sol;

t_old = z * f[0].transpose();
for (unsigned k = 1; k <= f.deg; k++)
{

t_new = B * t_old;
t_new += z * f[k].transpose();
[...] // check columns of t_new for solution

// and cpoy found solutions to sol
swap(t_new, t_old);

}
RETURN sol

Figure 7: Top-level iteration loop for BW3.
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Figure 8: Plot of a Macaulay matrix over F16, 8 variables, 10 equations. Each row has 45 entries, 1947
rows have been dropped randomly to obtain a square matrix.
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Figure 9: Runtime of XL 16-14 on one cluster node with two CPUs (8 cores in total) with different
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Figure 11: XL 16-14 on 4 cluster nodes using MPI with a total of 8 cores per node; one 1 block shared
row-wise by all nodes, two blocks shared row-wise by all nodes, and independent blocks per node.
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iteration j S
(j)
3 S

(j)
2 S

(j)
1 S

(j)
0 max(d(j))

0 ∅ ∅ {1} {0} 1
1 ∅ {2} {1} {0} 2
2 {3} {2} {1} {0} 3
3 {4} {3} {2} {1,0} 4
4 {5} {4} {3,2} {1,0} 5
5 {6} {5,4} {3,2} {1,0} 6
7 {7,6} {5,4} {3,2} {1,0} 7
. . . . . . . . . . . . . . . . . .

Table 1: Example for the workload distribution over 4 nodes for Coppersmith’s Berlekamp–Massey
algorithm.

NUMA Cluster
CPU

Name AMD Opteron 6172 Intel Xeon E5620
Microarchitecture Magny–Cours Nehalem
Support for PSHUFB 7 3

Frequency 2100 MHz 2400 MHz
Memory Bandwidth per socket 2 × 25.6 GB/s 25.6 GB/s
Number of CPUs per socket 2 1
Number of cores per socket 12 (2 x 6) 4
Level 1 data cache size 12 × 64 KB 4 × 32 KB
Level 2 data cache size 12 × 512 KB 4 × 256 KB
Level 3 data cache size 2 × 6 MB 8 MB
Cache-line size 64 byte 64 byte

System Architecture
Number of NUMA nodes 4 sockets × 2 CPUs 2 sockets × 1 CPU
Total number of cores 48 32
Number of cluster nodes — 4
Network interconnect — Infiniband 40 GB/s

Memory
Memory per CPU 32 GB 18 GB
Memory per cluster node — 36 GB
Total memory 256 GB 144 GB

Table 2: Parameters of the computer architectures used for the experiments.
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Abstract. In this work, we describe the first single-key attack on the full version of Grain-128 that
can recover arbitrary keys. Our attack is based on a new version of a cube tester, which is a factor of
about 238 faster than exhaustive search. To practically verify our results, we implemented the attack
on the reconfigurable hardware cluster RIVYERA and tested the main components of the attack for
dozens of random keys. Our experiments successfully demonstrated the correctness and expected com-
plexity of the attack by finding a very significant bias in our new cube tester for about 7.5% of the
tested keys. This is the first time that the main components of a complex analytical attack against a
digital full-size cipher were successfully implemented using special-purpose hardware, truly exploiting
the reconfigurable nature of an FPGA-based cryptanalytical device.

Keywords: Special-purpose hardware, Grain-128, stream cipher, cryptanalysis, cube attacks, cube
testers.

1 Introduction

Special-purpose hardware, i. e., computing machines dedicated to cryptanalytical problems, have a long tra-
dition in code-breaking, including attacks against the Enigma cipher during WWII [3]. Their use is promising
if two conditions are fulfilled. First, the complexity of the cryptanalytical problem must be - as of today - in
the range of approximately 250 . . . 264 operations. For problems with a lower complexity, conventional com-
puter clusters are typically sufficient, such as the linear cryptanalysis attack against DES [4] (which required
243 DES evaluations), and more than 264 operations are difficult to achieve with today’s technology unless
extremely large budgets are available. The second condition is that the computations involved are suited for
customized hardware architectures, which is often the case in symmetric cryptanalysis. Both conditions are
fulfilled for the building blocks of the Grain-128 attack described in this paper.

Grain-128 [1] is a 128-bit variant of the Grain scheme which was selected by the eSTREAM project in 2008
as one of the three recommended hardware-efficient stream ciphers. The only single-key attacks published so
far on this scheme which were substantially faster than exhaustive search were either on a reduced number
of rounds or on a specific class of weak keys which contains about one in a thousand keys.

Contribution of this work: In this paper, we describe the first attack which can be applied to the full scheme
of Grain-128 with arbitrary keys. It uses an improved cube distinguisher with new dynamic variables, which
makes it possible to attack Grain-128 with no restriction on the key. Its main components were experimentally
verified by running a 50-dimensional cube tester for 107 random keys and discovering a very strong bias (of
50 zeroes out of 51 bits) in about 7.5% of these keys. For these keys, we expect the running time of our new
attack to be about 238 times faster than exhaustive search, using 263 bits of memory. Our attack is thus both
faster and more general than the best previous attack on Grain-128 [2], which was a weak-key attack on one
in a thousand keys which was only 215 times faster than exhaustive search. However, our attack does not
seem to threaten the security of the original 80-bit Grain scheme.

In order to develop and experimentally verify the main components of the attack, we had to run thousands
of summations over cubes of dimension 49 and 50 for dozens of randomly chosen keys, where each summation
required the evaluation of 249 or 250 output bits of Grain-128 (running the time-consuming initialization
phase of Grain-128 for about 256 different key and IV values). This process is hardware-oriented, highly
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parallelizable, and well beyond the capabilities of a standard cluster of PC’s. We thus decided to implement
the attack on a special-purpose hardware cluster.

Even though it is widely speculated that government organizations have been using special-purpose hard-
ware for a long time, there are only few confirmed reports about cryptanalytical machines in the open
literature. In 1998, Deep Crack, an ASIC-based machine dedicated to brute-forcing DES, was introduced [5].
In 2006, COPACOBANA also allowed exhaustive key searches of DES, and in addition cryptanalysis of other
ciphers [6]. However, in the latter case often only very small-scale versions of the ciphers are vulnerable. The
paper at hand extends the previous work with respect to cryptanalysis with dedicated hardware in several
ways. Our work is the first time that the main components of a complex analytical attack, i. e., not merely an
exhaustive search, are successfully realized in a public way against a full-size cipher by using a special-purpose
machine (previous attacks were either a simple exhaustive search sped up by a special-purpose hardware,
or advanced attacks such as linear cryptanalysis which were realized in software on multiple workstations).
Also, this is the first attack which makes use of the reconfigurable nature of the hardware. Our RIVYERA
computer, consisting of 128 large FPGAs, is the most powerful cryptanalytical machine available outside
government agencies (possessing more than four times as many logic resources as the COPACOBANA ma-
chine). This makes our attack an interesting case study about what type of cryptanalysis can be done with
“university budgets” (as opposed to government budgets). As a final remark, it is worth noting that the same
attack implemented on GPU clusters would require an extremely large number of graphic cards, which would
not only require a very high budget but would consume considerably more electric energy to perform the
same computations.

Outline: In Section 2, we give the necessary background regarding Grain-128, dynamic cube attacks and
describe the new attack on Grain-128. Then we present our implementation of the attack in Section 3, before
we present our results and conclusions in Sections 4 and 5.

2 Background

In this section we briefly discuss the background required in the remainder of this work.

2.1 Grain-128 Stream Cipher

The state of Grain-128 consists of a 128-bit LFSR and a 128-bit NFSR. The feedback functions of the LFSR
and NFSR are respectively defined to be
si+128 = si + si+7 + si+38 + si+70 + si+81 + si+96

bi+128 = si+ bi+ bi+26+ bi+56+ bi+91+ bi+96+ bi+3bi+67+ bi+11bi+13+ bi+17bi+18+ bi+27bi+59+ bi+40bi+48+
bi+61bi+65 + bi+68bi+84

The output function is defined as
zi =

∑
j∈A bi+j + h(x) + si+93 , where A = {2, 15, 36, 45, 64, 73, 89}.

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8

where the variables x0, x1, x2, x3, x4, x5, x6, x7 and x8 correspond to the tap positions bi+12, si+8, si+13,
si+20, bi+95, si+42, si+60, si+79 and si+95 respectively.

Grain-128 is initialized with a 128-bit key that is loaded into the NFSR, and with a 96-bit IV that is loaded
into the LFSR, while the remaining 32 LFSR bits are filled with 1’s. The state is then clocked through 256
initialization rounds without producing an output, feeding the output back into the input of both registers.

2.2 Dynamic Cube Attacks

Cube Testers In almost any cryptographic scheme, each output bit can be described by a multivariate
master polynomial p(x1, .., xn, v1, .., vm) over GF(2) of secret variables xi (key bits), and public variables vj
(plaintext bits in block ciphers and MACs, IV bits in stream ciphers). The cryptanalyst is allowed to tweak
this master polynomial by assigning chosen values to the public variables (which result in multiple derived
polynomials).
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To simplify our notation, we ignore in the rest of this subsection the distinction between public and private
variables. Given a multivariate master polynomial with n variables p(x1, .., xn) over GF(2) in algebraic normal
form (ANF), and a term tI containing variables from an index subset I that are multiplied together, the
polynomial can be written as the sum of terms which are supersets of I and terms that miss at least one
variable from I:

p(x1, .., xn) ≡ tI · pS(I) + q(x1, .., xn)

pS(I) is called the superpoly of I in p. Compared to p, the algebraic degree of the superpoly is reduced by at
least the number of variables in tI , and its number of terms is smaller.

Cube testers [7] are related to high order differential attacks [8]. The basic idea behind them is that the
symbolic sum over GF(2) of all the derived polynomials obtained from the master polynomial by assigning
all the possible 0/1 values to the subset of variables in the term tI is exactly pS(I) which is the superpoly of tI
in p(x1, .., xn). This simplified polynomial is more likely to exhibit non-random properties than the original
polynomial P .

Cube testers work by evaluating superpolys of carefully selected terms tI which are products of public
variables, and trying to distinguish them from a random function. One of the natural properties that can
be tested is balance: A random function is expected to contain as many zeroes as ones in its truth table. A
superpoly that has a strongly unbalanced truth table can thus be used to distinguish the cryptosystem from
a random polynomial.

Dynamic Cube Attacks Dynamic Cube Attacks exploit distinguishers obtained from cube testers to
recover some secret key bits. In static cube testers (and other related attacks such as the original cube attack
[10], and AIDA [9]), the values of all the public variables that are not summed over are fixed to a constant
(usually zero), and thus they are called static variables. However, in dynamic cube attacks the values of some
of the public variables that are not part of the cube are not fixed. Instead, each one of these variables (called
dynamic variables) is assigned a function that depends on some of the cube public variables and on some
private variables. Each such function is carefully chosen in order to simplify the resultant superpoly and thus
to amplify the expected bias (or the non-randomness in general) of the cube tester.

The basic steps of the attack are briefly summarized below (for more details refer to [2], where the notion
of dynamic cube attacks was introduced).

Preprocessing Phase We first choose some polynomials that we want to set to zero at all the vertices of
the cube, and show how to nullify them by setting certain dynamic variables to appropriate expressions in
terms of the other public and secret variables. To minimize the number of evaluations of the cryptosystem,
we choose a big cube of dimension d and a set of subcubes to sum over during the online phase. We usually
choose the subcubes of the highest dimension (namely d and d− 1), which are the most likely to give a
biased sum. We then determine a set of e expressions in the private variables that need to be guessed by
the attacker in order to calculate the values of the dynamic variables during the cube summations.

Online Phase The online phase of the attack has two steps that are described in the following.
Step 1: The first step consists again of two substeps:

1. For each possible vector of values for the e secret expressions, sum modulo 2 the output bits over
the subcubes chosen during preprocessing with the dynamic variables set accordingly, and obtain
a list of sums (one bit per subcube).

2. Given the list of sums, calculate its score by measuring the non-randomness in the subcube sums.
The output of this step is a sequence of lists sorted from the lowest score to the highest (in our
notation the list with the lowest score has the largest bias, and is thus the most likely to be
correct in our attack).

Given that the dimension of our big cube is d, the complexity of summing over all its subcubes is
bounded by d2d (using the Moebius transform [11]). Assuming that we have to guess the values of e
secret expressions in order to determine the values of the dynamic variables, the complexity of this
step is bounded by d2d+e bit operations. Assuming that we have y dynamic variables, both the data
and memory complexities are bounded by 2d+y (since it is sufficient to obtain an output bit for every
possible vertex of the cube and for every possible value of the dynamic variables).
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Step 2: Given the sorted guess score list, we determine the most likely values for the secret expressions,
for a subset of the secret expressions, or for the entire key. The specific details of this step vary
according to the attack.

Partial Simulation Phase The complexity of executing online step 1 of the attack for a single key is d2d+e

bit operations and 2d+y cipher executions. In the case of Grain-128, these complexities are too high and
thus we have to experimentally verify our attack with a simpler procedure. Our solution is to calculate the
cube summations in online step 1 only for the correct guess of the e secret expressions. We then calculate
the score of the correct guess and estimate its expected position g in the sorted list of score values by
assuming that incorrect guesses will make the scheme behave as a random function. Consequently, if the
cube sums for the correct guess detect a property that is satisfied by a random cipher with probability p,
we estimate that the location of the correct guess in the sorted list will be g ≈ max{p×2e, 1} (as justified
in [2]).

2.3 Dynamic Cube Attacks on Grain-128

The parameter set we use for our attack is described — and its choice justified — in [12], and is given here
again in Table 1 for the sake of completeness. However, since we focus on the implementation of the attack,
we omit it from this paper. Moreover, we specify only the details of the online phase of the attack that are
most relevant to our hardware implementation. For the complete details, refer to [12].

Table 1. Parameter set for the attack on the full Grain-128, given output bit 257.

Cube Indexes {0,2,4,11,12,13,16,19,21,23,24,27,29,33,35,37,38,41,43,44,46, 47,49,52,53,54,55,
57,58,59,61,63,65,66,67,69,72,75,76,78,79,81,82,84,85,87,89,90,92,93}

Dynamic Variables {31,3,5,6,8,9,10,15,7,25,42,83,1}
State Bits Nullified {b159, b131, b133, b134, b136, b137, b138, b145, s135, b153, b170, b176, b203}

Before executing the online phase of the attack, one should take some preparation steps (given in [12])in
order to determine the list of e = 39 secret expressions in the key variables we have to guess during the actual
attack. Online step 1 of the attack is given below:

1. Obtain the first output bit produced by Grain-128 (after the full 256 initialization steps) with the fixed
secret key and all the possible values of the variables of the big cube and the dynamic variables given in
Table 1 (the remaining public variables are set to zero). The dimension of the big cube is 50 and we have
13 dynamic variables and thus the total amount of data and memory required is 250+13 = 263 bits.

2. We have 239 possible guesses for the secret expressions. Allocate a guess score array of 239 entries (an
entry per guess). For each possible value (guess) of the secret expressions:
(a) Plug the values of these expressions into the dynamic variables (which thus become a function of the

cube variables, but not the secret variables).
(b) Our big cube in Table 1 is of dimension 50. Allocate an array of 250 bit entries. For each possible

assignment to the cube variables:
i. Calculate the values of the dynamic variables and obtain the corresponding output bit of Grain-

128 from the data.
ii. Copy the value of the output bit to the array entry whose index corresponds to the assignment

of the cube variables.
(c) Given the 250-bit array, sum over all the entry values that correspond to the 51 subcubes of the big

cube which are of dimension 49 and 50. When summing over 49-dimensional cubes, keep the cube
variable that is not summed over to zero. This step gives a list of 51 bits (subcube sums).

(d) Given the 51 sums, calculate the score of the guess by measuring the fraction of bits which are equal
to 1. Copy the score to the appropriate entry in the guess score array and continue to the next guess
(item 2). If no more guesses remain go to the next step.
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Fig. 1. Architecture of the RIVYERA cluster system

3. Sort the 239 guess scores from the lowest score to the highest.

The total complexity of algorithm above is about 50 × 250+39 < 295 bit operations (it is dominated by
item 2.c, which is performed once for each of the 239 possible secret expression guesses).

Given the sorted guess array which is the output of online step 1, we are now ready to perform online
step 2 of the attack (which recovers the secret key without going through the difficult step of solving the
large system of polynomial equations). The details of online step 2 are given in [12], which also shows that
the total complexity the algorithm is equivalent to about g × 290 cipher evaluations.

The attack is worse than exhaustive search if we have to try all the 239 possible values of g, and thus it is
crucial to provide strong experimental evidence that g is relatively small for a large fraction of keys. In order
to estimate g, we executed the online part of the attack by calculating the score for the correct guess of the
39 expression values, and estimating how likely it is to get such a bias for incorrect guesses if we assume that
they behave as random functions.

The simulation algorithm is a simplified version of item 2 in online step 1 (performed only for the correct
key), and is described in Algorithm 2 as shown in the appendix. We performed this simulation for 107
randomly chosen keys, out of which 8 gave a very significant bias in which at least 50 of the 51 cubes sums
were zero. This is expected to occur in a random function with probability p < 2−45, and thus we estimate
that for about 7.5% of the keys, g ≈ max{2−45 × 239, 1} = 1 and thus the correct guess of the 39 secret
expressions will be the first in the sorted score list (additional keys among those we tested had smaller biases,
and thus a larger g). The complexity of online step 2 of the attack is thus expected to be about 290 cipher
executions, which dominates the complexity of the attack (the complexity of online step 1 is about 295 bit
operations, which we estimate as 295−10 = 285 cipher executions). This gives an improvement factor of 238
over the 2128 complexity of exhaustive search for a non-negligible fraction of keys, which is significantly better
than the improvement factor of 215 announced in [2] for the small subset of weak keys considered in that
attack. We note that for most additional keys there is a continuous tradeoff between the fraction of keys that
we can attack and the complexity of the attack on these keys.
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2.4 RIVYERA Special-Purpose Hardware Cluster

In this work, we employ an enhanced version of the COPACOBANA special-purpose hardware cluster that was
specifically designed for the task of cryptanalysis [6]. This enhanced cluster (also known as RIVYERA [13])
is populated with 128 Spartan-3 XC3S5000 FPGAs, each tightly coupled with 32MB memory. Each Spartan-
3 XC3S5000 FPGA provides a sea of logic resources consisting of 33,280 slices and 104 BRAMs enabling
the implementation even of complex functions in reconfigurable hardware. Eight FPGAs are soldered on
individual card modules that are plugged into a backplane which implements a global systolic ring bus for
high-performance communication. The internal ring bus is further connected via PCI Express to a host PC
which is also installed in the same 19" housing of the cluster. Figure 1 provides an overview of the architecture
of the RIVYERA special-purpose cluster.

3 Implementation

To get a better understanding of our implementation and the design decisions, we need to examine the steps
of the algebraic attack from Section 2.3. We start by formulating the steps from an implementation point-of-
view and discuss the workflow in more detail, briefly discuss the different implementation options and finally
describe our implementation on an FPGA cluster.

3.1 Analysis of the Algorithm

Algorithm 1 describes the attack with respect to its implementation in hardware.

Algorithm 1 Dynamic Cube Attack Simulation (Algorithm 2), Optimized for Implementation
Input: 96 bit integer baseIV, cube dimension d, cube C = {C0, . . . , Cd} with 0 ≤ Ci < 96 ∀Ci ∈ C, number of

polynomials m, dynamic variable indices D = {D0, . . . , Dm} with 0 ≤ Ci < 96 ∀Di ∈ D, state bit indices
S = {S0, . . . , Sm} with 0 ≤ Si < 96 ∀Si ∈ S.

Output: (d+ 1) bit cubesum s
1: IV ← baseIV
2: s← 0.

Key Selection
3: Choose random 128 bit key K.
4: Choose key-dependent polynomials Pj(X) nullifying state bits Sj .

Computation
5: for i← 0 to 2d − 1 do
6: for j ← 0 to d− 1 do
7: setBit(IV, Cj , getBit(i, j))
8: end for
9: for j ← 0 to m− 1 do
10: setBit(IV, Dj , Pj(i))
11: end for
12: ks← first bit of Grain-128(IV, K) keystream
13: if ks = 1 then
14: s← s⊕ (1|not(i))
15: end if
16: end for
17: return s.

To simplify the description, we use the function getBit(int, pos), returning the bit at position pos of
the integer int, and setBit(int, pos, val), setting the bit at position pos of integer int to val.
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All input arguments are included in the parameter set in Table 1. While they are fixed by the Table, we
have to keep in mind that the attack is also an experimental verification of this parameter set. Thus it is
important that the implementation should allow changes and pose as few restrictions as possible to these
values. The algorithm will compute the cube sum of d+ 1 bits, i. e., of size 51 bits with our parameters.

After selecting the key we wish to attack, we need to choose the polynomials, which nullify certain state
bits and reset the IV to a default value. In the loop starting at line 5, we iterate over all 2d combinations. Each
time, we modify the IV by spreading the current iteration value over the cube positions (line 7) and evaluate
the polynomials - boolean functions depending on these changing positions - and store the resulting bit per
function at the dynamic variable positions (line 10). Now that the IV is prepared, we run a full initialization
(256 rounds) of Grain-128 (line 12 and - in case the first keystream bit is not zero - we XOR the current sum
with the inverse of the d bit iteration count, prefixed by a 1 (line 14).

Figure 2 describes the basic workflow of an implementation: It uses a parameter set as input, e. g., the
cube dimension, the cube itself, a base IV and the number of keys to attack. It selects a random key to
attack and divides the big cube into smaller worker cubes and distributes them to worker threads running in
parallel. Please note that for simplicity the figure shows only one worker. If 2w workers are used in parallel,
the iterations per worker are reduced from 2d to 2d−w.

Choose random keyRead parameters Update worker cube

Evaluate polynomials and

update dynamic variables
Update worksum Compute Grain-128

2d times

Fig. 2. Cube Attack — Program flow for cube dimension d.

The darker nodes and the bold path show the steps of each independent thread: As each worker iterates
over a distinct subset of the cube, it evaluates polynomials on the worker cube (dynamic variables) and
updates the IV input to Grain-128. Using this generated IV and the random key, it computes the output of
Grain-128 after the initialization phase. With this output, the thread updates an intermediate value — the
worker sum — and starts the next iteration. In the end, the software combines all worker sums, evaluates
the result and may chose a new random key to start again.

We can see that the algorithm is split into three parts: First, we manipulate the worker cube positions
and derive an IV from it. Then, we compute the output of the Grain-128 stream cipher using the given key,
data and derived IV. Before we start the next iteration, the worksum is updated.

Grain-128: The second part is straight-forward and seems to be the main computational task. It concerns
only the Grain implementation: With a cube of dimension d, the attack on one key computes the first output
bit of Grain-128 2d times. As we already need 250 iterations with the current parameter set, it is necessary
to implement Grain-128 as efficiently as possible in order to speed up the attack.

Taking a closer look at the design of the stream cipher (see Section 2.1), it yields much potential for an ef-
ficient hardware implementation: It consists mainly of two shift registers and some logic cells. While using bit-
slicing techniques potentially decreases the overhead of CPUs when computing expensive bit-manipulations,
Aumasson et al.already proposed a fast and small FPGA implementation as a good choice when implementing
cube testers on Grain-128 in [14].
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IV Generation: To create an independent worker, it also needs to include the IV generation. This process
takes the default IV and modifies d+m bits, which is easily done in software by storing the generated IV as
an array and accessing the positions directly. Changing the parameters to compute larger cube dimensions
d, to allow more than m polynomials poses no problem either.

Considering a possible hardware implementation, this increases the complexity a lot. In contrast to the
software design, we cannot create a generic layout, which reads the parameter set: We need multiplexers for
all IV bits to allow dynamic choices and even more multiplexers to allow all possible combinations of boolean
functions to support all possible polynomials.

As this problem seems very easy in software and difficult in hardware, a software approach seems more
reasonable. Nevertheless, the communication overhead to supply many workers with new IVs every few clock
cycles explodes. To estimate the effort of building an independent worker in hardware, we need to know
how many dynamic inputs we have to consider in the IV generation process, as these modifications are very
inefficient in hardware: In order to compute the cipher, we need a key and an IV. The value of the key varies,
as it is chosen at random.

0 1 2
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0
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d-w
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cnt(0)

cnt(d-1)

iv(i)
0

...
m
-1
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Fig. 3. Necessary Multiplexers for each IV bit (without Optimizations) of a worker with worker cube size d − w
and m different polynomials. This is an (m + d − w + 1)-to-1 bit multiplexer, i. e., with the current parameter set a
(64− w)-to-1 bit multiplexer.

The IV is a 96 bit value, where each bit utilizes one of three functions as Figure 3 shows: it is either a value
given by the base IV (light grey) provided by the parameter set, part of the current counter spread across
the worker cube (grey) or a dynamic variable (dark grey). As the function of each bit differs not only per
parameter set, but also when assigning partial cubes to different workers, this input also varies and we need
to create an (m+ d−w+1)-to-1 bit multiplexer for each bit, resulting in 96× (64−w)-to-1 bit multiplexers
for our current parameter set.

The first two functionalities are both restricted and can be realized by simple multiplexers in hardware.
The dynamic variable on the other hand stores the result of a polynomial. As we have no set of pre-defined
polynomials and they are derived at runtime, every possible combination of boolean functions over the worker
cubes must be realized. Even with tight restrictions, i. e., a maximum number of terms per monomial and
monomials per polynomial, it is impossible to provide such a reconfigurable structure in hardware. As a
consequence, a fully dynamic approach leads to extremely large multiplexers and thus to very high area
consumption on the FPGA, which is prohibitively slow. Therefore, we need to choose a different strategy to
implement this part in hardware.

Worksum update: In order to finish one iteration, the worksum is modified. To simplify the synchronization
between the different threads, each worker updates a local intermediate value. In order to generate d + 1
bit intermediate values from the d − w bit sums, we precede the number not by a constant 1 but also with
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the w bit number of the worker thread. Please note that the actual implementation, we do not use d + 1
bit XOR operations: If the number of XORs is even, we need to prefix the constant, otherwise, we need to
prefix zeroes. Thus, a simple 1 bit value is sufficient to choose between these two values. When all workers
are finished, the real result needs to be computed by a XOR operation over all results.

Overall, the complexity of the algebraic attack is too high for a single machine and a cluster of some
kind is necessary. As the most cost-intensive operation concerns the 2d computations of the 256 step Grain
initialization, the use of a PC cluster is only marginally feasible, as CPUs are ill-suited for performing
computations relying heavily on bit-permutations.

We thus decided to implement and experimentally verify the complex attack on dedicated reconfigurable
hardware using the RIVYERA special-purpose hardware cluster, as described in Section 2.4. For the following
design decisions, we remark that RIVYERA provides 128 powerful Spartan-3 FPGAs, which are tightly
connected to an integrated server system powered by an Intel Core i7 920 with 8 logical CPU cores. This
allows us to utilize dedicated hardware and use a multi-core architecture for the software part.

3.2 FPGA Design

In this section, we give an overview of the hardware implementation. As the total number of iterations for one
attack (for the correct guess of the 39 secret expression values) is 2d, the number of workers for an optimal
setup has to be a power of two to decrease control logic and communication overhead.
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Fig. 4. FPGA Implementation of the online phase for cube dimension d.

Figure 4 shows the top level overview. Each of the 128 Spartan-3 5000 FPGAs features 24 independant
workers and each of these workers consists of its own IV generator to control multiple Grain-128 instances.

The IV generator needs three clock cycles per IV and we need a corresponding number of Grain instances
to process the output directly. As it is possible to run more than one initialization step per clock cycle in
parallel, we had to find the most suitable time/area trade-off for the cipher implementation.

Table 2 shows the synthesis results of our Grain implementation. In comparison, Aumasson et al. also
used 25 parallel steps, which is the maximum number of supported parallel steps without additional overhead,
on the large Virtex-5 LX330 FPGA used in [14]. By using three Grain instances, we do not lose clock cycles
where IV generation or cipher computation idle and - analyzing the critical path of the full design - the Grain
module is not the limiting factor.
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Table 2. Synthesis results of Grain-128 implementation on the Spartan-3 5000 FPGA with different numbers of
parallel steps per clock cycle.

Parallel Steps 20 21 22 23 24 25

Clock Cycles (Init) 256 128 64 32 16 8
Max. Frequency (MHz) 227.169 226.706 236.016 234.357 178.444 159.210
Max. Frequency (MHz) 227 226 236 234 178 159
FPGA Resources (Slices) 165 170 197 239 311 418
Flip Flops 278 285 310 339 393 371
4 input LUTs 288 297 345 420 583 804

The results of the cipher instances are gathered in the worksum control, which updates the partial cubesum
per worker, which is the output of all worker instances. The FPGA computes a partial cubesum of all workers
on the FPGA and returns it upon request.

As mentioned before, it is not possible to create an unrestricted IV generation. To circumvent this problem,
we locally fix certain values per key. This enables us to reduce the complexity of the system, as dynamic
inputs are changed to constants. The drawback is that we need to generate a bitstream, which is dependent
on the parameter set and - more important - on the key we wish to attack.

By looking at the discussion on the dynamic input to the IV generation, we can see that by fixing the
parameter set, we already gain an advantage on the iteration over the cube itself: By sorting these positions
and a smart distribution among the FPGAs, we reduce the complexity of the first part of the IV generation.
By setting the base IV constant, we can optimize the design automatically and with the constant key, we
remove the need to transfer any data to the FPGAs after programming them.

Nevertheless, the most important unknown are the polynomials. While we do have some restrictions from
the way these polynomials (consisting of and and xor operations) are generated, we cannot forecast the
impact of them: Remember that we use 13 different boolean functions in this parameter set. Each of these
can have up to 50 monomials, where every monomial can - in theory - use all d positions of the cube. Luckily,
on average, most polynomials depend on less than 5 variables.

3.3 Software Design

Now that we described the FPGA design and the need of key-dependent configurations, we will go into detail
on the software side of the attack. In order to successfully implement and run the attack on the RIVYERA
cluster and benefit from its massive computing power, we propose the following implementation. Figure 5
shows the design of the modified attack.

The software design is split into two parts: We use all but one core of the i7 CPU to generate attack
specific bitstreams, i. e., configuration files for the FPGAs, in parallel to prepare the computation on the
FPGA cluster. Each of these generated designs configures the RIVYERA for a complete attack on one
random key. As soon as one bitstream was generated and waits in the queue, the remaining core programs all
128 FPGAs with it, starts the attack, waits for the computation to finish and fetches the results. With the
partial cubesums per FPGA, the software computes the final result and evaluates the attack on the chosen
key to measure the effectiveness of the attack.

In contrast to the first approach, which uses the generic structure realizable in software and needed a lot
of communication, we generate custom VHDL code containing constant settings and fixed boolean functions
of the polynomials derived from the parameter set and the provided key. Building specific configuration
files for each attack setup allows us to implement as many fully functional, independent, parallel workers
as possible without the area consumption of complex control structures. In addition, this allows us to strip
down the communication interface and data paths to a minimum: only a single 7 bit parameter, distributing
the workspace between all 128 FPGAs, is necessary at runtime to start the computation and receive a d bit
return value. This efficiently circumvents all of the problems and overhead of a generic hardware design at
the cost of rerunning the FPGA design flow for each parameter/key pair.

Please note that in this approach the host software modifies a basic design by hard-coding conditions
and adjusting internal bus and memory sizes for each attack. We optimized this basic layout as much as
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Fig. 5. Cube Attack Implementation on Special-Purpose Hardware

possible for average sized boolean functions, but the different choices of the polynomial functions lead to
different combinatorial logic paths and routing decisions, which is bound to change the critical path in the
hardware design. As the clock frequency is directly linked to the critical path, we implemented different design
strategies as well as multiple fall-back options to modify the clock frequency constraints in order to prevent
parameter/key pairs from resulting in an invalid hardware configurations. As a result, you can see a fallback
path in Figure 2, which tries different design strategies automatically if the generated reports indicate failures
during the process or timing violations after the analysis phase.

4 Results

In this section, we present the results of our implementation. The hardware results are based on Xilinx ISE
Foundation 13 for synthesis and place and route. We compiled the software part using GCC 4.1.2 and the
OpenMP library for multi-threading and ran the tests on the i7 CPU integrated in the RIVYERA cluster.

The hardware design was used to test different parameter sets and chose the most promising parameters.
The resulting attack system for the online phase — consisting of the software and the RIVYERA cluster —
uses 16 workers per FPGA and 128 FPGAs on the cluster in parallel. This means that the number of Grain
computations per worker is reduced to 2d−11, i. e., 239 with the current cube dimension. The design ensures



Dinur, Güneysu, Paar, Shamir, Zimmermann

SHARCS 2012 Workshop Record 166

that each key can be attacked at the highest possible clock frequency, while it tries to keep the building time
per configuration moderate.

Table 3. Strategy Overview for the automated build process. The strategies are sorted from top to bottom. In the
worst case, all 16 combinations may be executed.

Global Settings Worker Clock (MHz)
2.4× Input Clk 120
2.2× Input Clk 110
2.0× Input Clk 100
RIVYERA Input Clk 50
Map Settings Placer Effort Placer Extra Effort Register Duplication Cover Mode
Speed Normal None On Speed
Area High Normal Off Area
Place and Route Settings Overall Effort Placer Effort Router Effort Extra Effort
Fast Build High Normal Normal None
High Effort High High High Normal

Table 3 explains the different strategies in more detail: Each line represents one choice of settings, while
the three blocks represent the impact on the subsequent build process. The design is synthesized with one of
the four clock frequency settings. When the build process reaches the mapping stage, it tries first the speed
optimized settings and runs the fast place and route. In case this fails, it tries the high effort place and route
setting. If this fails, it tries the Area settings for the mapping and may fall back to a lower clock frequency
setting, repeating the complete build process again.

As the user clock frequency of the RIVYERA architecture is 50 MHz, the Xilinx Tools will easily analyze
the paths for a scaling factor 1.0 and 2.0. As the success rate when routing the design with 2.5 times the
input clock frequency (125 MHz) was too low, we removed this setting due to the high impact on the building
time.

Table 4. Results of the generation process for cubes of dimension 46, 47 and 50. The duration is the time required
for the RIVYERA cluster to complete the online phase. The Percentage row gives the percentage of configurations
built with the given clock frequency out of the total number of configurations built with cubes of the same dimension.

Cube Dimension d 46 47 50
Clock Frequency (MHz) 100 110 120 120 110 120
Configurations Built 1 7 8 6 60 93
Percentage 6.25 43.75 50 100 39.2 60.8
Online Phase Duration 17.2 min 15.6 min 14.3 min 28.6 min 4h 10 min 3h 49 min

Table 4 reflects the results of the generation process and the distribution of the configurations with respect
to the different clock frequencies. It shows that the impact of the unknown parameters is not predictable
and that fallback strategies are necessary. Please note that the new attack tries to generate configurations
for multiple keys in parallel. This process — if several strategies are tried — may require more than 6 hours
before the first configuration becomes available. Smaller cube dimensions, i. e., all cube dimensions lower than
48, result in very fast attacks and should be neglected, as the building time will exceed the duration of the
attack in hardware. Further note that the duration of the attack increases exponentially in d, e. g., assuming
100 MHz as achievable for larger cube dimensions, d = 53 needs 1.5 days and d = 54 needs 3 days.

5 Conclusions

Cube attacks and testers are notoriously difficult to analyze mathematically. To test the attack experimentally,
to find and validate suitable parameters and to verify its complexity, we were restricted by the limitations of
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CPU clusters, making further evaluations difficult. Due to its high complexity and hardware-oriented nature,
the attack was developed and verified using the RIVYERA hardware cluster.

We presented an architecture making use of both the integrated i7 CPU and the 128 FPGAs of the
RIVYERA cluster and heavily relying on the reconfigurability of the cluster system. This way, we were able
to successfully implement the first attack on Grain-128, which is considerably faster than exhaustive search
and, unlike previous attacks, makes no assumptions on the secret key.

While we were unable to conduct the full attack in this work, we can estimate its results by running a
partial version. Our experimental results showed that for about 7.5% of the keys we could achieve a signficant
improvement by a factor of 238 over exhaustive search.
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A Appendix: Simulation Algorithm

Algorithm 2 The Dynamic Cube Attack Simulation
Input: 128-bit key K.
Input: Expressions e1, ..., e13 and the corresponding indexes of the dynamic variable i1, ..., i13.
Input: Big cube C = (c1, ..., c50) containing the indexes of the 50 cube variables.
Output: The score of K.
1: S ← (0, ..., 0) . the 51 cube boolean sums, where S[51] is the sum of the big cube
2: IV ← (0, ..., 0) . as the initial 96-bit IV
3: for j ← 1 to 13 do
4: ej ← eval(ej ,K) . Plug the value of the secret key into the expression
5: end for
6: for all cube indexes CV from 0 to 250 do
7: for j ← 1 to 50 do
8: IV [cj ]← CV [j] . Update IV with the value of the cube variable
9: end for
10: for j ← 1 to 13 do
11: IV [ij ]← eval(ej , IV ) . Update IV with the evaluation of the dynamic variable
12: end for
13: b← Grain-128(IV,K) . Calculate the first output bit of Grain-128
14: for j ← 1 to 50 do
15: if CV [j] = 0 then
16: S[j]← S[j] + b (mod 2) . Update cube sum
17: end if
18: end for
19: S[51]← S[51] + b (mod 2)
20: end for
21: HW ← 0
22: for j ← 1 to 51 do
23: if S[j] = 0 then
24: HW ← HW + 1.
25: end if
26: end for
27: return HW/51
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Abstract—The NVIDIA compilers nvcc and ptxas leave the
programmer with only very limited control over register alloca-
tion, register spills, instruction selection, and instruction schedul-
ing. In theory a programmer can gain control by writing an entire
kernel in van der Laan’s cudasm assembly language, but this
requires tedious, error-prone tracking of register assignments.

This paper introduces a higher-level assembly language,
qhasm-cudasm, that allows much faster programming while pro-
viding the same amount of control over the GPU. This language
has been used successfully to build a 90000-machine-instruction
kernel for a computation described in detail in the paper, the
largest public cryptanalytic project in history. The best GTX
295 speed that has been obtained for this computation with nvcc
and ptxas is 25 million iterations per second; the best GTX 295
speed that has been obtained with qhasm-cudasm is 63 million
iterations per second.

I. INTRODUCTION

Decades of advances in the design of optimizing com-
pilers have reduced, but have not eliminated, the need for
some performance-critical functions to be written in assembly
language. For high-performance implementations in C it is

common practice to write the critical parts in assembly.
This paper introduces a new assembly language

qhasm-cudasm for programming Graphics Processing Units
(GPUs), specifically NVIDIA’s Tesla-architecture GPUs.
There is no analogue to assembly in CUDA, NVIDIA’s
standard GPU programming toolkit. NVIDIA’s “PTX” is
labelled as an assembly language, but it is in fact compiled
and hides too many machine details to be usable for writing
cutting-edge code. We started from van der Laan’s cudasm,
a true assembly language for Tesla GPUs; we completely
redesigned the syntax for readability and incorporated
a powerful register allocator from qhasm [3], ultimately
obtaining a usable assembly language for GPUs.

We have used qhasm-cudasm successfully to produce highly
optimized code for a major cryptanalytic computation, the
“ECC2K-130” computation, an order of magnitude larger than
the RSA-768 factorization announced in [11]. This paper
describes this implementation in detail as a case study for
qhasm-cudasm. Finishing the computation in two years with
the fastest CPU software developed would require 1595 quad-
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core (3.2 GHz AMD Phenom II X4 955) PCs, but would
require just 534 GTX 295 graphics cards with our software,
or just 229 cost-optimized PCs each having a quad-core CPU
and two GTX 295 graphics cards.

Our software was optimized for and tested on a GTX 295
graphics card containing two 1.242GHz G200b GPUs. We
later tried the same software on the T10 GPUs (in Tesla S1070-
500 units) in TeraGrid’s Lincoln cluster, similar GPUs in the
NCF/SARA cluster, and the FX 5800 GPUs in TeraGrid’s
Longhorn cluster; documentation indicates that these GPUs
have essentially the same microarchitecture as the GTX 295,
except for small differences in clock speed, and as expected we
saw very similar cycle counts. Of course, assembly languages
need to be redone for each new architecture, but massive
speedups are ample justification for this effort.

A. Cores and multiprocessors

Each of the targeted GPUs contains 30 “multiprocessors”;
each multiprocessor contains 8 “streaming processors” and
a few auxiliary units; each “streaming processor” performs,
typically, one 32-bit operation per cycle. Warning: NVIDIA
documentation often refers to each “streaming processor” as a
“core.” We find that terminology misleading: GPU multipro-
cessors are much more closely analogous to CPU cores, and
GPU streaming processors are much more closely analogous
to CPU ALUs. In this paper we refer to multiprocessors
as cores and streaming processors as ALUs.

This paper describes a computation running on one core of
a GPU. Cycle counts in the paper are cycle counts for a single
GTX 295 core. Of course, to make full use of the GPU we
actually run 30 independent computations on the 30 cores of
the GPU, i.e., 60 independent computations on the GTX 295.

B. Threads

There is an additional level of parallelism within each GPU
core: the core runs many threads of computation simultane-
ously. The number of threads is chosen by the programmer,
but is limited by various resources shared among threads.

There are many cycles of latency between successive op-
erations in a thread, and standard advice is to run at least
192 threads per core to hide this latency. For several reasons
we chose to run only 128 threads per core in the particular
computation discussed in this paper. The penalty for using only
128 threads turns out to be quite small: experiments show that
128 threads performing arithmetic operations in registers can
keep all of the ALUs busy in a GPU core, and that occasional
loads and stores from “shared memory” can be handled by
the “special function units” in the GPU core without slowing
down the ALUs. One important reason to limit the number of
threads, although not the only reason, is that all threads on a
core have to share a total of 16384 registers; 128 threads are
each given 128 registers (minus a few special registers), and
we make good use of those registers. A smaller number of
threads would linearly reduce the ALU utilization and would
not provide more registers per thread: the hardware does not
allow one thread to address more than 128 registers.

C. Bitslicing

The particular computation targeted in this paper consists of
a series of iterations summarized in Section II. Each iteration is
a straight-line sequence of approximately 70000 bit operations.
The bit operations are two-input ANDs (the output is 1 if both
inputs are 1, otherwise 0) and two-input XORs (the output is
1 if the inputs are different, otherwise 0).

We carry out 128 independent iterations in parallel on
a single GPU core, with no communication between the
iterations. We apply each bit operation as a 128-way SIMD
operation. GPU instructions, like CPU instructions, are word-
oriented, so we adopt a standard strategy called “bitslicing”:
the 32 consecutive bits in a 32-bit register, or in a 32-bit
memory location, are from 32 separate iterations. A 128-way
XOR is then built straightforwardly from four 32-bit XORs,
and a 128-way AND is built straightforwardly from four 32-bit
ANDs.

We emphasize that these are 128 bit operations. For com-
parison, a single 32-bit instruction followed by 128 threads
in parallel is carrying out 4096 bit operations. In other words,
128-way parallelism is only 1/32nd of the parallelism required
to keep 128 threads busy. We would like to carry out many
more independent iterations in parallel, but we are limited
by the amount of shared memory available on a GPU core,
especially for multiplication; see Section IX.

II. TARGET: THE ECC2K-130 CHALLENGE

Many cryptographic implementations base their security on
the hardness of the Discrete Logarithm Problem (DLP) on
elliptic curves. Cryptanalysis, the science of breaking cryp-
tography, plays an important role in determining the hardness
of the DLP in relation to the different ways of choosing these
curves—critical information for users who want to choose
curves that balance efficiency and security.

In general, the hardness of the DLP grows with the size
of the curve and there are several types of curves that are
particularly hard to break. To give good estimates for the
cost of breaking the DLP, challenge problems are posed at
various sizes and for the different types of curves. From the
time necessary to break these challenges one can extrapolate
the costs for breaking larger systems and estimate how much
computational effort is necessary to break a real-world system;
this then translates into how much money is necessary to
buy the hardware necessary to break actual cryptographic
implementations. Of course the cost estimates depend on the
type of hardware—customized ASICs are likely to have a
better price-performance ratio than off-the-shelf PCs but also
require more specialized knowledge and come at a high initial
cost for designing and fabricating the chip. Challenges put
no restrictions on the hardware used but so far all breaks
of challenges in public-key cryptography have used standard
CPUs with ample RAM per thread, such as the Intel Core 2
or the PlayStation 3.

The computation described in this paper is part of a big
cryptanalytic project, namely the breaking of the Certicom
challenge ECC2K-130 [7]. The ECC2K-130 challenge was
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posed in 1997 and remains unbroken today. Our estimates
are that about 277 bit operations are necessary to break this
challenge, which just barely brings this computation into reach
for academic teams. Full details about the challenge and the
mathematical background are described in [1]. That paper
also gives an overview of how the core part of the ECC2K-
130 computation can be implemented on various platforms,
ranging from standard CPUs to FPGAs and ASICs. The paper
contains a section on GPUs but achieves worse performance
on an entire GTX 295 than on a PlayStation 3, even though
the GTX 295 is theoretically capable of performing almost
eight times as many bit operations per second (10× as many
cores, 2× as many bit operations per cycle per core, 0.388×
the clock speed). More details on the fast implementation that
we use here to illustrate the features of qhasm-cudasm are
given in [4].

The computation is embarrassingly parallel and does not
require much communication or storage. The challenge for the
implementor is to perform as many meaningful bit operations
per cycle as possible. Unfortunately, as described in the next
section, the available compiler tools were not able to schedule
the instructions and memory accesses in a way suitable to keep
the arithmetic units of the GPU busy.

Our ECC2K-130 computation works with two representa-
tions of the finite field F2131 : a polynomial-basis representation
introduced in [5], and a standard normal-basis representation.
Multiplications naturally begin with polynomial-basis inputs
but can efficiently produce outputs in either polynomial basis
or normal basis. Squarings are most efficient in normal-basis
representation.

The computation consists of a large number of iterations,
with an essentially unlimited number of iterations to perform
in parallel. We repeat here the description of the iteration
function from [5, Section 5]. The input to an iteration is a
pair (x,y) of elements of F2131 satisfying certain conditions,
notably that x has even Hamming weight w in normal basis.
The output is another pair (x′,y′) defined by

x′ = λ2 +λ+ x+ x2 j
,

y′ = λ(x+ x′)+ x′+ y,

where j = 3+((w/2) mod 8) and λ = (y+ y2 j
)/(x+ x2 j

).
Each iteration involves three multiplications to compute

the reciprocal of x + x2 j
, two further multiplications, four

conversions from normal basis to polynomial basis, and many
squarings and additions. See [5] for further details and analysis
of the number of bit operations per iteration. Major subroutines
in our software include ppn/ppp for a multiplication producing
normal-basis/polynomial-basis output respectively, multprep
for a basis conversion, hamming for a Hamming-weight com-
putation, add for an addition, and sq for a squaring. These
operations are described in later sections when we explain
details of their implementation in the new framework of our
usable assembly language.

III. TROUBLE WITH THE CUDA TOOLCHAIN

The hardware architecture of GPUs is expected to change
even faster than the architecture of CPUs, not only in respect
to the number of cores and sizes of caches but also in respect
to the instruction set and register file organization. However,
NVIDIA has committed to keep CUDA programs forward-
compatible, ensuring that code written today runs on new
video cards of tomorrow. NVIDIA covers a wide range of
GPUs over several generations by using layers of abstraction.

We briefly recap the normal compilation process supported
by NVIDIA. The programmer writes software in a C-like
language, either CUDA or OpenCL. The NVIDIA compiler
nvcc compiles this software into instructions for a pseudo-
machine called PTX (“parallel thread execution”). The second-
stage NVIDIA compiler ptxas (normally invoked implicitly
by nvcc) reads PTX code and produces actual GPU machine
language in an undocumented format called .cubin. The
CUDA driver loads the .cubin file onto a GPU and runs it.
The .cubin format was text before CUDA 3.0, but was then
replaced by a binary format requiring less parsing.

Writing software in CUDA or OpenCL, or in the interme-
diate language PTX, allows the software to be easily adapted
to new hardware generations: in principle one should be able
to simply recompile the software for a new GPU. However,
this convenience does not seem to be compatible with our
goal of high performance. Most of the GPU clusters that we
have access to have the same Tesla architecture, increasing the
value of optimizations targeting that architecture.

Since the PTX instruction definition is not very far from the
actual instruction set of the Tesla-architecture GPUs, one could
reasonably hope that using register variables in PTX followed
by assembling to binary by ptxas from the NVIDIA toolchain
would give the necessary control over the resources of a GPU.
Unfortunately, we encountered major drawbacks of ptxas,
including bad run-time performance, excessive compilation
times, and sometimes complete failures to produce binary
code.

A critical problem: Apparently the register allocator of
ptxas was not designed for large kernels; the intended target
applications are graphics shaders and small computing kernels.
When the kernel is large, the allocation “leaks” (allocates too
many) registers even when we explicitly generate code to be
runnable within a smaller number of registers. Execution is
often drastically slowed down when the compiler spills values
to “local memory”; spilling values to “shared memory” is often
even worse, preventing us from launching as many threads as
we would like.

It is possible to code around the deficiencies of ptxas.
However, the cost is significant in run time and programmer
time. In our initial implementation work, we were forced
after several months and much pulling of hair to employ
a simple “schoolbook” method of implementing our critical
multiplication subroutine, instead of any of the more advanced
methods such as those mentioned in [1]. The end result was
an overall performance hit of around 50%.
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In many other cases the only workaround is to split the
computation into several kernels which are executed one
after another. This introduces additional overhead for kernel
invocation. An ideal program would need to have as large
kernels as possible to be handled by ptxas to avoid as much
invocation overhead as possible. This would require much
effort and experimentation on ideal kernel sizes.

We take a different approach, replacing ptxas by a tool
that is able to handle large kernels without penalty. The
next section introduces our new qhasm-cudasm tool. Beyond
the basic benefit of supporting large kernels, qhasm-cudasm
introduces a new input language that gives the programmer
much more control over the hardware than PTX does, while
at the same time achieving higher readability.

IV. cudasm, qhasm, AND qhasm-cudasm

This section describes the existing cudasm and qhasm
assembly-language tools, and our new qhasm-cudasm assem-
bly language.

A. cudasm

In 2007 van der Laan reverse-engineered the machine lan-
guage of the NVIDIA GPUs. He released a decuda disas-
sembler, translating each machine instruction into a readable
format (somewhat similar to NVIDIA’s documented PTX
format, although the machine language turned out to be more
complicated than PTX). Shortly afterwards he released a
cudasm assembler. See [14].

Our experience is that decuda is by far the easiest way to
figure out what ptxas is doing wrong. Anecdotal evidence
suggests that decuda became moderately popular among se-
rious programmers for exactly this reason. However, cudasm
attracted far less attention. One paper [8] reported a successful
application of decuda and cudasm to manually rewrite a small
section of ptxas output, but said that this was “tedious” and
hampered by cudasm bugs: “we must extract minimum region
of binary code needed to be modified and keep remaining
binary code unchanged . . . implementation of cudasm is not
entirely complete, it is not a good idea to write whole assembly
manually and rely on cudasm.”

We fixed various bugs in cudasm: for example, we found
that memory offsets were sometimes silently ignored. Our
fixed version of cudasm is capable of generating a fully
functional 90000-GPU-instruction kernel for our software, and
in fact is exactly what we use to generate all of the kernels
that we are now running. However, writing these kernels in
the cudasm input language would have been an extremely
time-consuming job; we actually wrote our software in a new
language, as discussed below.

B. qhasm

Years ago, one of the authors of this paper (Bernstein) tried
very hard to convince gcc to emit his desired sequence of
floating-point instructions for a performance-critical crypto-
graphic application on an x86 CPU. Unfortunately, the x86
architecture had (at the time) only 8 floating-point registers;

gcc expected to keep one of those registers in reserve for stack
management; and trying to fit this particular application into
7 registers, rather than 8, seemed to irreparably compromise
performance. He resorted to writing the same function in x86
assembly language; this required manually maintaining a chart
of the floating-point values in each register, and redoing the
chart several times to accommodate changes in the code.

The same author subsequently developed a higher-level
assembly language, qhasm, to give him the same control as a
traditional x86 assembly language with far less programming
time. Many cryptographic speed records were set by software
written in qhasm; see, e.g., [2], [6], and [9].

There are several differences between qhasm and a tra-
ditional assembly language. The most visible difference is
the choice of syntax: qhasm uses readable C-like syntax
such as d = c + 3, while a traditional assembler might use
lea 3(%ecx),%edx. The most important difference, however,
is that qhasm includes a very fast, very smart register allocator,
mapping an unlimited stream of programmer-selected names
to the small number of registers provided by a CPU. The
programmer still controls the selection of instructions, still
controls the order of instructions, and still controls which
values remain in registers, but qhasm handles the tedious task
of assigning registers. The programmer can easily specify a
register assignment but almost never has to.

C. qhasm-cudasm

To bring the same level of assembly-language usability to
GPUs we have built a new qhasm-cudasm language, reusing
the qhasm register allocator to generate code that can be
fed as input to our fixed version of cudasm. We wrote our
new ECC2K-130 software in qhasm-cudasm; see subsequent
sections of this paper for details.

The core of qhasm-cudasm is a GPU machine-description
file, currently 2818 lines; many of those lines are automatically
generated from a shorter script. What follows is a typical line
from that file, split into five lines here for readability:

r = y + t:
>r=low32:
<y=low32:
<t=low32:
asm/add.b32 >r, <y, <t:

This line says that if r and y and t have been declared to be
low32 registers then the qhasm-cudasm instruction r = y +
t reads y, reads t, writes r (eliminating any previous value),
and corresponds to the cudasm instruction add.b32 r, y, t.
Another line (with dots here for brevity) specifies the set of
64 low32 registers:

:name:low32:$r0:$r1:...:$r63:

The reader might be wondering how each thread can have
access to nearly 128 registers (as mentioned earlier) if there
are only 64 registers listed here. The answer is that there are
60 extra high32 registers:

:name:high32:$r64:$r65:...:$r123:
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These are distinguished in qhasm-cudasm because they are
distinguished in the GPU machine language: typical instruc-
tions can use high32 in the first operand, or in the second
operand, but not in the third operand.

We developed the machine-description file at the same time
as writing code for the ECC2K-130 computation. We often
changed syntax to improve readability or to avoid common
error patterns. We added new instructions whenever we needed
them:

r = s[p+m] if e signed<:
<e=cond:
inplace>r=high32:
<p=offset:
<r=high32:
#m:
asm/@<e.lt mov.b32 <r, s[<p+#m]:

This example is a predicated 32-bit load from shared memory
into a high32 register. The output value r can depend on the
input value r, and the user can rely on it being assigned to the
same register; this is what inplace>r=high32 accomplishes.
#m indicates an immediate constant. The register changes to
the contents of the load if the signed< bit is set in the e
predicate register.

We added an extra layer of preprocessing in front of
qhasm-cudasm, using Ward’s m5 macro preprocessor [15]. An
m5 script is, except for some syntactic sugar, an awk program
that prints another program; each of our m5 scripts is a program
that prints a qhasm-cudasm program.

We are using qhasm-cudasm for new applications, and are
continuing to add instructions to the machine-description file.
We are also building scripts to automate larger portions of the
generation of the machine-description file.

D. Engineering a new implementation
For a typical function in the ECC2K-130 computation, such

as add (described in the next section), we wrote a series of
three implementations. The first implementation consisted of
• a simple C++ implementation add.cpp of a
paralleladd function operating on data in CPU
memory; and

• a test driver addtest.cpp calling paralleladd.
The second implementation consisted of
• CUDA code for sharedadd in add.cu, operating on data

in shared memory;
• CUDA code for kerneladd in kadd.cu, operating on

data in global memory by copying from global memory
to shared memory and calling sharedadd;

• CUDA code for paralleladd, also in kadd.cu, operat-
ing on data in CPU memory by copying from the CPU
to the GPU and then calling kerneladd; and

• the same test driver addtest.cpp.
The third implementation consisted of
• qhasm-cudasm code for sharedadd in add.mq;
• qhasm-cudasm code for kerneladd in kadd.mq, inlining
sharedadd by including add.mq;

• the same CUDA code for paralleladd in kadd.cu,
calling kerneladd; and

• the same test driver addtest.cpp.
Testing each version with the same test driver allowed typical
bugs to be caught quickly.

It is common practice in GPU programming to implement
functions twice, once in C and once in CUDA, with the same
test driver; it is common practice in assembly-language pro-
gramming to implement functions twice, once in C and once
in assembly, with the same test driver. Our split between the
first and second implementations followed the first practice,
and our split between the second and third implementations
imitated the second practice.

While working on the qhasm-cudasm versions we wrote a
“big-kernel” implementation of the ECC2K-130 main loop.
We wrote this main loop as a series of operations such as

xshift = rˆ2
xshift += r
d = global_Nd[j]
xshift += d
multprep r

in an ad-hoc language (not to be confused with
qhasm-cudasm). We wrote a translator that converted
this ad-hoc language to CUDA, replacing (e.g.) xshift
+= r with an appropriate call to the sharedadd function
defined in add.cu, and replacing d = global_Nd[j] with
an appropriate copy from global memory to shared memory.
This CUDA implementation was extremely slow, and took
an extremely long time for NVIDIA’s tools to compile,
but allowed the main loop to be tested independently of
qhasm-cudasm.

We then wrote a translator that converted the same main
loop to qhasm-cudasm code, automatically inlining individual
qhasm-cudasm functions such as the sharedadd function de-
fined in add.mq. Some data-flow misdeclarations had slipped
past the individual tests and forced too many registers to be
allocated in the main loop; in retrospect this could have been
caught earlier by an extension to qhasm-cudasm, but in any
case it was easy to diagnose and fix. This implementation took
much less time to compile than the CUDA version and was
much faster.

Afterwards we focused on optimizing various functions,
producing the details described in subsequent sections. The
third implementation described above was still in place,
so any changes in add.mq were automatically tested by
addtest.cpp. We also set up further scaffolding to measure
time spent in various parts of the software, guiding our
subsequent optimizations.

V. SCHEDULING INSTRUCTIONS: add AND cadd

The simplest arithmetic operation in the ECC2K-130 com-
putation is an addition in a field of size 2131: in other words,
a XOR of two 131-bit input vectors, producing a 131-bit
output vector. In our software this operation is called add.
A “conditional” variant of the same operation, cadd, has an



Bernstein, Chen, Cheng, Lange, Niederhagen, Schwabe, Yang

SHARCS 2012 Workshop Record 174

extra input bit that masks the second input vector: whenever
a mask bit is 0, cadd simply copies the corresponding input
bit from the first input, ignoring the second input.

As discussed earlier, we actually perform 128 independent
computations in parallel. The add function actually takes two
131× 128-bit input matrices (each stored in bitsliced row-
major form as 131 consecutive 128-bit vectors), and produces
an output matrix of the same size. The cadd function actually
takes an extra 128-bit vector that masks the second input
matrix.

This section describes our implementations of add and
cadd. These functions are only small parts of the ECC2K-130
computation, but they are a useful starting point to illustrate
the capabilities of qhasm-cudasm.

A. Predicate registers

Our 128 threads handle a vector of 131× 128 = 524× 32
bits as 128× 32 bits, then 128× 32 bits, then 128× 32 bits,
then 128×32 bits, and finally 12×32 bits.

For the last 12×32 output bits, only 12 of the 128 threads
are active. Each thread compares its “thread ID” (between 0
and 127) to the constant 12, and temporarily deactivates itself
unless the thread ID is smaller than 12.

The GPU hardware has four special “predicate registers” in
each thread (in addition to other registers) to store the results
of such comparisons. Our ECC2K-130 software sets up one
of these registers as follows:

cond tid12
tid12 tid - $(const(12))

A typical GPU instruction allows one input from “con-
stant memory”; qhasm-cudasm converts $(const(12)) into
a constant-memory location, and arranges for that location to
contain the integer 12. The line cond tid12 declares tid12 as
a predicate register; tid12 tid - $(const(12)) compares
tid to 12 and puts the result of the comparison into tid12.

To save time inside functions such as add we perform
this particular comparison once in the caller, rather than
performing it again each time the function is called. This
means that one of the four predicate registers is reserved long-
term for tid12, but tid12 is used frequently enough to justify
this.

B. Shared-memory offsets

Each GPU core has 16384 bytes of “shared memory.” A
typical GPU instruction allows one input from shared memory.
Reading shared memory is often as fast as reading a register,
although it can trigger some additional bottlenecks. Shared
memory has two advantages over registers: first, it allows
threads to quickly communicate with each other; second,
shared-memory indices can be variables, while register num-
bers are always constant.

The GPU hardware has four special “offset registers” in
each thread to store indices into shared memory. In our
ECC2K-130 software the caller sets up an offset register before
calling add, cadd, etc.:

offset tid4off
tid4off = tid << 2

Here offset tid4off declares tid4off to be one of the
offset registers, and tid4off = tid << 2 performs a shift
by 2, i.e., a multiplication by 4. Note that a shift of a general-
purpose register can put its output into an offset register.

C. How the add function works

Our m5 function add(to,from) prints code that reads two
inputs from shared memory, XORs the inputs, and writes
the output on top of the first input. The input addresses are
to and from; the output address is to. This code is not a
machine-level function requiring call and ret instructions;
it is inlined into the code generated by the caller, just like a
macro expansion.

The add function begins by loading the first input:

syncthreads
new @x4
@x0 = s[tid4off + $to]
@x1 = s[tid4off + $(to + 512)]
@x2 = s[tid4off + $(to + 1024)]
@x3 = s[tid4off + $(to + 1536)]
@x4 = s[tid4off + $(to + 2048)] if tid12 signed<

Here $ starts a compile-time computation; if to happens to
be 4000, for example, then the fourth line above is converted
into @x1 = s[tid4off + 4512].

Recall that the tid12 predicate register compared the thread
ID to 12. The predicate if tid12 signed< skips the instruc-
tion on the same line unless the thread ID is smaller than 12.
Note that each predicate register actually has four different
comparison bits, allowing a variety of different predicates:
signed<, signed<=, etc.

Two aspects of the above code help the qhasm register
allocator manage data flow. First, @ creates (at the m5 level) a
register name specific to this function call, avoiding accidental
data flow between function calls. Second, new @x4 informs the
register allocator that there is no data flow from any previous
use of the @x4 register. This is not necessary for @x0, @x1,
@x2, @x3: a register written by a non-predicated assignment
has value independent of its previous value.

The add function continues by loading the second input:

new @y4
@y0 = s[tid4off + $from]
@y1 = s[tid4off + $(from + 512)]
@y2 = s[tid4off + $(from + 1024)]
@y3 = s[tid4off + $(from + 1536)]
@y4 = s[tid4off + $(from + 2048)] if tid12 signed<

The function then computes and stores the results:

@x0 ˆ= @y0
@x1 ˆ= @y1
@x2 ˆ= @y2
@x3 ˆ= @y3
@x4 ˆ= @y4
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s[tid4off + $to] = @x0
s[tid4off + $(to + 512)] = @x1
s[tid4off + $(to + 1024)] = @x2
s[tid4off + $(to + 1536)] = @x3
s[tid4off + $(to + 2048)] = @x4 if tid12 signed<

The cadd function is similar but includes two extra instruc-
tions to load the mask and five extra AND instructions.

One can sometimes merge a load instruction and an XOR
instruction into a single load-and-XOR instruction. However,
the load-and-XOR instruction requires the immediate value
used in the address computation to be in the range from −128
to 127, while the immediate values in the code shown above
are almost never in this range. We subsequently experimented
with rearranging the responsibilities of threads, assigning the
first thread to the first 5×32 bits, the second thread to the next
5×32 bits, etc., so that each load address would be just 4 bytes
after the previous rather than 512 bytes after the previous. This
saved five instructions but cost four instructions to initialize
two new offset registers; competition for offset registers meant
that we could not keep these two offset registers longer
than the function call. We plan to experiment further with
eliminating this cost by more comprehensively rearranging
our data structures, interleaving several 131×128-bit matrices
with each other.

D. Performance

One can crudely model a GPU core as following 8 instruc-
tions per cycle. This model suggests that 128 threads would
follow the 21 instructions shown above (10 loads, 5 stores, 5
XORs, 1 synchronization) in 336 cycles, and would follow the
28 cadd instructions in 448 cycles.

The GPU has a cycle counter. This counter is labelled as
halfclock in qhasm-cudasm, because it actually counts once
every two cycles. The cycle counter shows that the cadd
instructions plus the cycle-counting time actually take 644
cycles, while our CUDA implementation of the same function
takes 1106 cycles. An inspection of the machine-language
code produced by nvcc and ptxas shows several sources of
inefficiency, such as excessive use of offset registers. We could
try to tweak our CUDA code, hoping for better output from
nvcc and ptxas, but writing the code in qhasm-cudasm is
less effort.

VI. HANDLING MEMORY CONFLICTS: sq AND csq

The ECC2K-130 computation involves 8 different sq oper-
ations. Each of these operations takes as input one 131×128
bit matrix and applies a fixed permutation to the rows of the
input matrix to produce again a 131×128 bit matrix as output.
What is different in these 8 sq operations is the permutation
applied to the rows. Each matrix row is stored in 4 successive
32-bit integers, so that one sq operation requires 4 ·131 = 524
load instructions and another 524 store instructions.

This sq operation takes 5 load instructions and 5 store
instructions issued to 128 threads; here two instructions (one
load and one store) are conditional depending on the thread
ID. However, the performance of 128 concurrent load or store

operations performed by 128 threads is highly dependent on
the addresses of the data loaded or stored.

Shared memory is organized into 16 “banks” of memory:
16 consecutive 32-bit words are spread across the banks, one
per bank. The 128 threads are organized into 4 “warps”; each
warp is divided into 2 “half-warps”. The 16 threads of one
half-warp can execute a load operation of the sq operation in
one cycle only if they all load from different memory banks.
If two or more threads within the same half-warp load from
or store to different addresses on the same memory bank in
the same instruction, these requests are serialized.

We first group every four adjacent threads and let them
operate on the four 32-bit words of one matrix row. Four such
groups form a half-warp. We try to assign the 131 rows to
such groups in a way that avoids all memory-bank conflicts.

We use a lookup table in constant memory to assign the
131 rows to 32 thread groups. Each entry of this lookup table
requires only one byte; we pack 4 lookup-table entries into
one 32-bit value.

The memory-bank restrictions also hold for storing the data,
so avoiding memory-conflicts only for loading may yield bank
conflicts when storing the data at the locations given by the
fixed row permutation. We implemented a tool that uses a
greedy approach to compute two lookup tables, one for loading
and one for storing, that avoid almost all bank conflicts. These
tables are linked through the permutation given by the sq
operation.

Four of the sq operations are used very frequently, so we
load the packed 20 load and 20 store positions from constant
memory once at the beginning of the computation and then
keep them in long-term registers:

sqseq_tmp = tid uint32>> 2
sqseq_pos = sqseq_tmp << 2

low32 sqseq_in0
low32 sqseq_in1
low32 sqseq_in2
low32 sqseq_in3
low32 sqseq_in4
sqseq_in0 = c0[sqseq_pos + 0]
sqseq_in1 = c0[sqseq_pos + 128]
sqseq_in2 = c0[sqseq_pos + 256]
sqseq_in3 = c0[sqseq_pos + 384]
sqseq_in4 = c0[sqseq_pos + 512]

low32 sqseq_out0
low32 sqseq_out1
low32 sqseq_out2
low32 sqseq_out3
low32 sqseq_out4
sqseq_out0 = c0[sqseq_pos + $(0+1048)]
sqseq_out1 = c0[sqseq_pos + $(128+1048)]
sqseq_out2 = c0[sqseq_pos + $(256+1048)]
sqseq_out3 = c0[sqseq_pos + $(384+1048)]
sqseq_out4 = c0[sqseq_pos + $(512+1048)]
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Extracting one of the 4 packed positions from a 32-bit
integer requires (at most) one shift and one mask instruction.
For example, the following code extracts one position from
sqseq_out0:

@p0 = sqseq_out0 uint32>> 4
@p0 &= $(const(4080))

Similar comments apply to csq, a conditional version of sq.

VII. REDUCING SERIALIZATION: hamming

The hamming operation takes as input a 131× 128 bit
matrix, computes the Hamming weight (sum of bits) for each
column of the matrix, and stores the binary representation of
the Hamming weight in the first bits of each column.

Adding up all bits in order is a completely serial process,
but we obtain some parallelization by changing the order of
additions. The basic operation takes three input vectors a, b,
and c and computes two output vectors bot and top so that
for each position i it holds that a[i] + b[i] + c[i] = top[i] ·
2+ bot[i]. It is possible to schedule 32 such operations in
parallel under some conditions on the addresses modulo 16.
This means that in the first step a total of 3×32 = 96 vectors
can be handled, leading to 32 resulting vectors on level 1 (top)
and 32+(131−96) = 67 results on level 0 (bot). In the next
step results on level 2 can be computed by using vectors on
level 1 as inputs; we carefully arrange vector positions so that
in the same instruction results on level 1 and 0 are computed.

The computation is composed of two routines, FULLAD-
DER(x,in0,in1,in2,out0,out1,threads) and HALFAD-
DER(x,in0,in1,out0,out1,threads). The core of the FUL-
LADDER routine consists of the following code:

syncthreads
@todo tid - $(const(4 * threads))
new @a
new @b
new @c
@a=s[tid4off + $(x + 16*in0)] if @todo signed<
@b=s[tid4off + $(x + 16*in1)] if @todo signed<
@c=s[tid4off + $(x + 16*in2)] if @todo signed<
@sum=@a ˆ @b
@aandb=@a & @b
@candsum=@c & @sum
@bot=@sum ˆ @c
@top=@aandb ˆ @candsum
s[tid4off + $(x + 16*out0)]=@bot if @todo signed<
s[tid4off + $(x + 16*out1)]=@top if @todo signed<

The core of the HALFADDER routine consists of the following
code:

syncthreads
@todo tid - $(const(4 * threads))
new @a
new @b
@a=s[tid4off + $(x + 16*in0)] if @todo signed<
@b=s[tid4off + $(x + 16*in1)] if @todo signed<

@bot=@a ˆ @b
@top=@a & @b
s[tid4off + $(x + 16*out0)]=@bot if @todo signed<
s[tid4off + $(x + 16*out1)]=@top if @todo signed<

Overall we use 19 FULLADDER stages and 2 HALFADDER
stages.

VIII. BATCHING OPERATIONS: multprep ETC.

The multprep operation takes as input a 131× 128 bit
matrix and transforms this matrix in place using a particular
pattern of XORs. We first explain the transformation as a
series of operations on 128-bit vector variables c0, . . . , c130
holding the matrix rows, and then discuss parallelization of
the transformation.

The transformation starts with the short initial computation

c126ˆ=c128
c125ˆ=c129
c124ˆ=c130

and continues with 6 levels of conversion. Level 1 consists of
one computation involving 126 rows:

c62ˆ=c64
c61ˆ=c65
c60ˆ=c66
...
c0ˆ=c126

Level 2 consists of 2 computations, each involving 62 rows:

c30ˆ=c32
c29ˆ=c33
...
c0ˆ=c62

and

c94ˆ=c96
c93ˆ=c97
...
c64ˆ=c126

Level 3 consists of 4 computations, each involving 30 rows;
level 4 of 8 computations, each involving 14 rows; level 5 of
16 computations, each involving 6 rows; and level 6 of 32
computations, each involving 2 rows. The basic structure of
each of these computations on each level is XORing the upper
rows into the lower rows as shown for levels 1 and 2.

We merge levels 1 and 2 of conversion, and then assign the
resulting 125 computations to 128 threads as follows. As in
previous sections, each group of four adjacent threads operates
on the four 32-bit integers of one matrix row. We assign the
first group (threads 0, 1, 2, 3) to the operations in levels 1 and
2 on c0, c62, c64, and c126:

c62ˆ=c64
c0ˆ=c126
c64ˆ=c126
c0ˆ=c62
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The actual qhasm-cudasm code consists of the following 11
instructions, where x is the starting position of the input matrix
in shared memory:

@a=s[tid4off + $(x)]
@f=s[@zoff + $(x+4*4*(62+64))]
@b=s[tid4off + $(x+4*4*64)]
@c=s[@zoff + $(x+4*4*62)]
@aˆ=@f
@cˆ=@b
@aˆ=@c
@bˆ=@f
s[tid4off + $(x)]=@a
s[tid4off + $(x+4*4*64)]=@b if @check signed<
s[@zoff + $(x+4*4*62)]=@c

Thread 1 performs the same operations on c1, c61, c65 and
c125, and so on; thread 30 performs the operations on c30,
c32, c94 and c96. In a similar way we merge levels 3 and 4
and levels 5 and 6.

Merging two consecutive levels keeps most threads busy
during the whole computation, and results in only a small
number of memory-bank conflicts for 128 threads working on
the whole matrix.

IX. MINIMIZING CODE SIZE: ppn AND ppp

The most time-consuming operation in our software is field
multiplication. This consists of a 131× 131→ 261-bit poly-
nomial multiplication, followed by a 261→ 131-bit reduction.
As mentioned earlier, field multiplication has two flavors, ppn
and ppp; these have the same polynomial multiplication but
differ in the details of the reduction.

Our polynomial-multiplication code consists of 725 instruc-
tions and uses almost all of the 16KB shared memory. See [4,
Section 5] for details of our multiplication strategy. Reduction
is similar to the multprep operation described in Section VIII
but is about twice as long.

Our main loop originally consisted of straight-line code for a
batch of B iterations, using 5B+5 multiplications. We wanted
B to be reasonably large, at least 32, so as not to notice the +5
overhead here, but we ran into a performance problem: 165
straight-line multiplications do not fit into the second-level
GPU instruction cache. The cores cannot load instructions
from global memory quickly enough to keep the ALUs busy.

To avoid this problem we reduced code size by the following
compression strategy: identify a large, contiguous, frequently
used part of the code, and convert it into a machine-level
function. Our code uses Tesla instructions call.label and
return to enter and leave the function; these instructions
manage return addresses in hardware.

We are departing here from the standard practice on GPUs,
namely to inline all code. There is no common calling con-
vention; saving registers to a stack in global memory would
be highly inefficient. We avoid register spills, and circumvent
the introduction of a calling convention, by instructing the
register allocator to find a fixed register assignment suitable
for all calls to a particular function.

The largest contiguous section of code in our kernel, and
also the largest consumer of time, is the 131-bit polyno-
mial multiplication. We put just one copy of the code into
the kernel, labeled as mult_131x131. All m5-level calls to
the multiplication—which would normally cause inlining in
the assembly code—are replaced by machine-level calls to
mult_131x131.

This mechanism for function calls goes beyond any previous
use of qhasm. It increases pressure on the register allocator and
requires us to place careful hints to the register allocator about
expired register variables. But the code works, and most of its
run time is spent on instructions that fit into the instruction
cache.

We also arranged large parts of the computation into size-B
loops, but the most natural way to do this still contained 16
multiplications. Function calls are more flexible than loops.

We further reduced code size by using half instructions.
Most instructions are encoded in 64-bit words, but some
simple instructions can be encoded in 32-bit words:

shortinsn @p0 += @slicex
shortinsn @p1 += @slicex
shortinsn @p2 += @slicex
shortinsn @p3 += @slicex

A pair of these half instructions fills up one slot of a “regular”
full instruction.

X. INSTRUCTION SCHEDULING

NVIDIA’s documentation does not suggest any real impor-
tance to the order of instructions. There are warnings regarding
large latencies for global-memory access, but there is no
documentation of the latencies of any other instructions, or
of any other interactions between nearby instructions.

We nevertheless found two ways to save time by reordering
instructions. First, given dependent instructions such as

@c ˆ= @b
@a ˆ= @c

we moved another instruction in between. If the first instruc-
tion is issued to 128 threads then it will occupy the 8 ALUs
in the core for only 16 cycles, but apparently it has a latency
of more than 16 cycles, stalling the next instruction if there is
a dependency.

Second, we tried to avoid adjacent shared-memory accesses.
There seems to be a latency of more than 16 cycles from
one shared-memory instruction to the next shared-memory
instruction, even if the instructions are not dependent.

After this round of optimization we found that our
qhasm-cudasm code was running at 63 million iterations
per second on a GTX 295, more than 4 trillion useful bit
operations per second. This is only a quarter of the maximum
theoretical capacity of a GTX 295 but it is more than twice
as fast as our best code compiled by nvcc and ptxas.

XI. CONCLUSION

In this paper, we have described a high-level assembly-
language toolchain, called qhasm-cudasm, that simultaneously
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allows efficient programming and complete control over raw
GPU hardware. qhasm-cudasm programmers have full control
over instruction selection and scheduling, as well as register
allocation and spills. Furthermore, qhasm-cudasm has auto-
mated the most tedious task of register assignment while
giving the programmer the maximum degree of freedom in
software architectural exploration, allowing creative program-
ming to reach new heights of performance on the GPU. This
allowed us to build a 90000-machine-instruction kernel for
the largest cryptanalysis project in history, and a streamlined
kernel outperforming the best nvcc implementation by 148%.
We expect to be able to use the qhasm-cudasm toolchain to
set speed records for many other applications, and in fact have
already used it to almost double the speed of a computation
in quantum chemistry.

There are already several projects that aim to provide anal-
ogous features to cudasm for the latest GPUs from NVIDIA
and AMD: asfermi [10] targets NVIDIA’s Fermi architecture;
amdasm [13] targets AMD GPUs; calasm [12], from one of the
authors of this paper (Niederhagen), also targets AMD GPUs.
Future versions of our software will build upon these projects,
bringing the usability of qhasm-cudasm to all of these GPUs.
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dard cryptographic algorithms [20, 25, 13, 8]. We show that that it can
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in particular in cryptanalysis.
The starting point is the notion of Multiplicative Complexity recently
used to find very good optimizations of the AES S-box [5, 8, 7]. We have
developed a method and software to optimize the multiplicative com-
plexity and also the linear components using SAT solvers. We produce
a compact implementation of two block ciphers PRESENT and GOST
known for their exceptionally low hardware cost. We cover all the nu-
merous variants of GOST and have released an open source bitslice im-
plementation of PRESENT which is now the best publicly available [1].
We explain why our methodology is suitable and should be used in imple-
mentations aiming at preventing side channel attacks on cryptographic
chips such as DPA. We show that our method can give better results
that with standard and gate-level logical optimization tools such as the
famous Berkeley Logic Friday software. Moreover, most of our results
are optimal and cannot be improved which is a rare achievement in
complexity.
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step underlying a number of recent attacks on symmetric ciphers such
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1 Introduction

The problems of circuit complexity is one of the hardest and yet very important
problems in computer science and complexity theory. For the great majority
of concrete circuits, it is not known what will be the lowest bound on their
complexity, neither how to compute very good circuits efficiently. Not everybody
in the industry cares about improving their gate count by a small factor, but
such optimizations are particularly important in hardware implementation of
standard cryptographic algorithms [20, 25, 13, 8], which in many security chips
such as smart cards and RFID, will be one of the most costly components. Here
even a small gain can produce measurable savings.

Many heuristic algorithms for this problem have been invented, and with a
lot of computing power one can find very decent optimizations [20], but these
optimizations are frequently subject to further substantial improvement. In this
paper we particularly focus on optimizing the S-boxes for industrial block ci-
phers.

Much less known and very surprising is that this is also an important topic in
cryptanalysis. As shown in [13, 16, 14] such optimizations are also very important
in order to speed up so called algebraic attacks on symmetric ciphers, and in the
space of attacks which require very small quantities of data, these methods lead
to currently best known attacks on a few ciphers (with more data, typically faster
attacks will exist). In this paper we focus mostly on 4x4 S-boxes in ciphers such
as PRESENT and GOST. These ciphers are known for their exceptionally low
hardware implementation cost [25]. But this is also what makes them vulnerable
to algebraic cryptanalysis.

Sometimes the very existence of an attack on the cipher which would be
faster than brute force will depend on a concrete circuit optimization problem,
precisely because the time complexity must be fast enough to beat the brute force
attacks. Our work on cryptanalysis makes extensive use of SAT solver software,
both at the optimization stage, when a “compact algebraic description” of a
cipher is produced, and a later solving stage, where the equations are solved to
in order to compute the secret key.

1.1 Specific Topics of Interest

In 2008 Boyar and Peralta introduced a new heuristic methodology to minimize
the complexity of digital circuits [5, 8, 7]. It is based on the notion of Multiplica-
tive Complexity (MC).

Multiplicative Complexity (MC) is a well-known and very deep notion of
arithmetic complexity invariant w.r.t. affine transformations, which minimizes
the number of non-linear elementary transformations, see [30, 4, 5]. Their main
heuristics is that a two step-process based on MC appears to be able to pro-
duce very good gate efficient implementation of several famous circuits such
as the AES S-box, and some other circuits related to finite fields and algebra,
Several such results can be found in [8, 7]. In this paper we apply this methodol-
ogy to some cryptographically significant functions GF (2)4 → GF (2)4 (i.e. 4x4
S-boxes). We developed software which allows us to compute optimal represen-
tations of these S-boxes w.r.t to this methodology.
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1.2 Motivations For Achieving Low-MC and Low Gate Count

More generally, we are interested in all sorts of minimal decompositions of cryp-
tographic circuits into very basic components. We can see at least six distinct
reasons and motivations, which will leading to closely related (but in fact dis-
tinct) requirements for such optimizations. For example we may want to:

1. Lower the hardware implementation cost of a cipher in silicon.
2. Develop certain software implementations such as in [1].
3. Prevent Side Channel Attacks (SCA) on smart cards such as Differential

Power Analysis (DPA) [26]. Here Multiplicative Complexity (MC) seems
perfect: XORs are believed easier to protect against side-channel attacks,
see [26] and minimizing the number of AND gates is likely to minimize the
overall cost of such protections. More generally we expect that MC and sim-
ilar optimizations are very helpful especially in general-purpose protection
methods against side channel attacks, which aim at implement securely com-
pletely arbitrary digital circuits see [26, 23]. For particular ciphers, there may
be better (dedicated) solutions.

4. We may try to discover hidden vulnerabilities inside ciphers.
5. It is known that certain algebraic software attacks on symmetric ciphers such

as in [13, 14] benefit from very compact representations of S-boxes.
6. In symbolic computing and numerical algebra, this kind of optimizations can

be applied recursively to produce asymptotically fast algorithms to solve very
famous and important practical problems such as Gaussian reduction and
matrix multiplication, see [10].

2 Bitslice Gate Complexity and Multiplicative
Complexity

In this section we define two particular models for gate complexity of digital
circuits.

Definition 2.0.1 (Bitslice Gate Complexity (BGC)).
Given a function GF (2)n → GF (2)m we define its Bitslice Gate Complexity
(BGC) as the minimum number of 2-input gates of types XOR,OR,AND,OR
needed.

Note: we do NOT allow gates of type NOR and NAND. This is a very
simple model, in which the cost of all these gates is considered to be the same,
and which is relevant for example in so called Bit-slice implementations of block
ciphers, such as for example in [1]. However it is not an optimal model for silicon
implementations, where certain gates are more costly to implement, while NOR
and NAND gates are actually less costly.

Now we recall the definition of MC [30, 4, 5, 8]:

Definition 2.0.2 (Multiplicative Complexity (MC)).
Given a function GF (2)n → GF (2)m we define its Multiplicative Complexity
(MC) as the minimum number of AND gates which need to be used to implement
this function, with an unlimited number of XOR and NOT gates.
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This model considers that linear operations come “for free” and ask to min-
imize just the number of AND gates. The problem with Bitslice Gate Complex-
ity (BGC) is that we are not in general able to determine its value, algorithms
which find such optimizations are typically random stochastic explorations of
large trees of solutions [20] and we are not sure if the optimizations are final or
if they can still be improved. However, as we will see in this paper, at least for
small circuits, the Multiplicative Complexity (MC) can be computed exactly
by our methods which use SAT solver software.

We have also the following fact which results directly from the definition:

Fact 1. The Multiplicative Complexity is invariant w.r.t. to multivariate affine
transformations at the input and at the output. As a consequence, for a 4x4 bit
S-box, its Multiplicative Complexity is the same for the whole affine equivalence
class, which classes are studied in [22, 28].

2.1 Multiplicative Complexity As A Tool For Gate Complexity

Boyar and Peralta have a developed a heuristic methodology, where they opti-
mise for of Multiplicative Complexity (MC) in order to produce also gate-efficient
implementations:

1. (Step 1) First compute the multiplicative complexity.
2. (Step 2) Then optimise the number of XORs separately, see [6, 19].
3. Optional Step 3: At the end do additional optimizations to decrease the

circuit depth, and possibly additional software optimizations, see [5, 8],

This methodology was then used to produce new worldwide records in gate
efficient implementation of several famous circuits such as the AES S-box, and
many other circuits related to finite fields and algebra, [8, 7, 7].

2.2 Our Method to Compute the Multiplicative Complexity

In this paper we focus on optimisation of functions GF (2)4 → GF (2)4 which are
immensely popular in cryptography [28]. We have implemented fully and with
our own optimisation methods, both Steps 1. and 2. above.

The crucial feature of our implementation is that BOTH our Steps 1. and
2. are OPTIMAL, i.e. they produce the best possible optimizations which can
be obtained by following these two steps. Optimality was achieved due to SAT
solver software, we convert our problem to SAT and it either outputs SAT, and
a solution, which we convert to a concrete circuit optimization, or it outputs
UNSAT, and we are certain that there is no solution. There is third possibility,
that the SAT solver software runs for a very long time and we do not have
enough computing power to decide whether the result is SAT or UNSAT, but
this have never happened for 4x4 S-boxes. Accordingly, we were able to produce
optimal optimizations or this type for every 4x4 S-box we have ever tried. This
is very rare in complexity: to be able to completely determine the best possible
result.

We must say that these methods are at prototyping stage and they are so far
slower than other known methods [20]. Likewise, we do not claim that we can
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optimise the linear parts as quickly as by recent methods described in [5, 6], but
only that we can optimize to the strictest minimum possible, which probably
can also be achieved in [19] by similar methods and SAT solvers. This is for
linear circuits. However it seems that we are the first to apply SAT solvers also
to optimize non-linear circuits.

We have also obtained some very good results on bi-linear circuits, see [10].

2.3 Provable Aspects of Our Method

Our solutions are optimal and thus proven to be impossible to improve (auto-
mated software proof with UNSAT). This is they would be provably optimal, if
we had a proof of correctness of the SAT solver software.

It will also be correct, but not proven correct, if there is no bug in the SAT
solver software. Such a bug, where a problem which is SAT is claimed to be
UNSAT by another solver, will quickly and easily be found, because we have a
portfolio of many different SAT solver software, and regularly check these results
by at least a few SAT solvers. Even if we assume the presence of bugs in this
software, one can consider that our proofs are “probabilistic proofs”, but still
the probability of error can be easily made as small as desired.

Thus we achieve a proof of impossibility when our program outputs UNSAT
for smaller sizes. We also claim that what we do could be extended to produce
fully verifiable mathematical proofs written in a formal language, which prove
these optimality results. Some SAT solvers already have the ability to output
such proofs. However what is missing is also a proof that all our conversions are
correct and preserve correctness. This can be done in future research. Such proofs
would not be published in scientific papers, but rather as lengthy computer files,
which should come together with a formal system able to efficiently check the
correctness of such proofs. This is a major topic for further research which would
require one to develop a whole new formal language and software to manipulate
it.

2.4 An Alternative Method to Compute the Multiplicative
Complexity

We can note that for Step 1, and only for 4x4 S-boxes, there is a simple and
alternative method to compute the of Multiplicative Complexity (MC), in step
1, following the work on classification and equivalence of 4x4 S-boxes [22, 28]. It
is as follows:

1. Determine another S-box for which our S-box is an affine equivalent of an-
other S-box, for which the MC was already computed.

2. The affine equivalence can be determined by methods of [2] which are ac-
tually essentially the same methods which have been proposed at the same
conference 10 years earlier [9] in a slightly different context.
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3 Optimizing the PRESENT S-box

The PRESENT S-box is defined as {12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2}.
We will number the least significant bits starting from 1.

Theorem 3.0.1. The Multiplicative Complexity of the PRESENT S-box is ex-
actly 4.

Proof: For 3 AND gates our thoroughly designed and tested system outputs UN-
SAT. This could be converted to a formal proof that the Multiplicative Com-
plexity is at least 3. We have obtained an automated proof of this fact which
takes a few seconds on a PC and can reproduced and checked. For 4 AND gates,
our system outputs SAT and a solution. Further optimisation of the linear part,
which is also optimal as we also obtained UNSAT for lower numbers, allowed
us to minimize the number of XORs to the strict minimum possible (prove by
additional UNSAT results). As a result, for example we have obtained an im-
plementation of the PRESENT S-box with 25 gates, 4 AND, 20 XOR, 1 NOT
which is optimal w.r.t our Boyar-Peralta 2-step methodology but not optimal in
overall gate complexity. 25 gates are still not very satisfactory.

A better result in terms of gate complexity can be achieved by the following
method: we observe that AND gates and OR gates are affine equivalents, and it
is likely that if we implement certain AND gates with OR gates, we might be
able to further reduce the overall complexity of the linear parts. We may try all
possible 24 cases where some AND gates are implemented with OR gates. Even
better results can be obtained if we consider also NOR and NAND gates. By
this method, starting with the right optimization with MC=4, as several such
optimizations may exist, we can obtain the following new implementation of the
PRESENT S-box which requires only 14 gates total (!):

T1=X2^X1; T2=X1&T1; T3=X0^T2; Y3=X3^T3; T2=T1&T3; T1^=Y3; T2^=X1;

T4=X3|T2; Y2=T1^T4; T2^=~X3; Y0=Y2^T2; T2|=T1; Y1=T3^T2;

Fig. 1. Our implementation of the PRESENT S-box with only 14 gates

Applications. This implementation is used in our recent bit-slice implemen-
tation of PRESENT, see [1]. In addition we postulate that this implementation
of the PRESENT S-box is in certain sense optimal for DPA-protected hardware
implementations with linear masking, as it minimizes the number of non-linear
gates (there are only 4 such gates).

Discussion. Our best optimisation of the PRESENT S-box does not con-
tradict the Boyar-Peralta heuristic to the effect that some of the best possible
gate-efficient implementations are very closely related to the notion of multiplica-
tive complexity. However the most recent implementations of the AES S-box, in
the second paper by Boyar and Peralta, show that further improvements, and
also circuit depth improvements, can be achieved also by relaxing the number of
ANDs used as in the latest optimization of the 4-bit inverse in GF (24) for AES
given on Fig 1. in [8].
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4 The GOST S-boxes

We consider the main standard and most widely known version of the GOST
block cipher, known as ”GostR3411 94 TestParamSet” in [21]. and also known
as the one used by the Central Bank of the Russian Federation [25]. By running
the same method and programs we obtained the following result:

Theorem 4.0.2. The Multiplicative Complexity of the eight GOST S-boxes
S1,S2,S3,S4,S5,S6,S7,S8 is exactly equal to respectively 4,5,5,5,5,5,4,5.

Related Work: We can compare this to the results in Table on page 226 of
[25] where we see that these 8 S-boxes are also on average more expensive than
the PRESENT S-box in the sense of Gate Equivalent (GE) cost, (the GOST
S-boxes cost 23.5 GE on average per S-box while the PRESENT S-box appears
to require about 27 GE). In Table 3 in [25] we see that PRESENT S-box is bet-
ter against linear and differential cryptanalysis. However in our Multiplicative
Complexity (MC) metric, in our Bitslice Gate Multiplicative Complexity (BGC)
metric, and also in the strict GE cost metric in [25], it is clear that the com-
plexity of the PRESENT S-box is always lower and therefore we conjecture that
PRESENT S-box will be weaker than the GOST S-boxes, against many types of
algebraic cryptanalysis such as attacks described in [16, 17]. Thus it is probably
a bad idea to use the GOST cipher with the PRESENT S-box, as proposed in
[25].

4.1 Additional Standard GOST S-boxes

Remark: In the future works we will publish much more results for all the 64
known GOST S-boxes and their inverses, and also other optimizations of these
S-boxes, and also the exact application of these results in cryptanalysis. The
table below contains some preliminary results.

Table 1. Multiplicative Complexity for all known GOST S-Boxes

S-box Set Name S1 S2 S3 S4 S5 S6 S7 S8

GostR3411 94 TestParamSet 4 5 5 5 5 5 4 5

GostR3411 94 CryptoProParamSet 4 5 5 4 5 5 4 5

Gost28147 TestParamSet 4 4 4 4 4 5 5 5

Gost28147 CryptoProParamSetA 5 4 5 4 4 4 5 5

Gost28147 CryptoProParamSetB 5 5 5 5 5 5 5 5

Gost28147 CryptoProParamSetC 5 5 5 5 5 5 5 5

Gost28147 CryptoProParamSetD 5 5 5 5 5 5 5 5

GostR3411 94 SberbankHashParamset 4 4 4 5 5 4 4 4

We believe that this table gives some first and early indications which ver-
sions of GOST will be more secure against algebraic cryptanalysis, this however
requires much more extra work.
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5 Multiplicative Complexity of Whole Ciphers

It appears that, from here we are able to provably minimize the number of
non-linear gates in a whole given cipher, to a proven lower bound.

In order to do this we need to look at any other existing non-linear compo-
nents of the cipher, and also compute their Multiplicative Complexity (MC).

Then we also need to prove that the Multiplicative Complexity is not reduced
by the combination.

Such a reduction is not always very likely, but if it occurs, it could be con-
sidered as a potential structural flaw in the cipher. It could be seen as a sign
that somewhat the designers have maybe ”wasted” the computational resources
in hardware, for a given security level. Alternatively, it could also be a source of
potential shortcuts to implement the cipher more efficiently.

6 Multiplicative Complexity of Whole GOST Cipher

We would like to minimize the number of non-linear gates in the whole given
cipher. We sketch how this can be done for the GOST block cipher. We basically
need to compute the Multiplicative Complexity (MC) for each component and
add them.

6.1 Modular Addition

In addition to S-boxes, the GOST cipher uses addition modulo 232. The inter-
esting question is what is the multiplicative complexity of this operation.

In order to optimize this addition modulo 232 we follow the first method
described in [15]. Let us consider three n-bit words (xn−1, . . . , x0), (yn−1, . . . , y0)
and (zn−1, . . . , z0) with z0 being the low-order bit. The modular addition

(x, y) 7→ z = x¢ y mod 2n

can be described the following way by (∗) and (∗′), using new variables that are
carry bits, represented by the (n− 1)-bit word c = (cn−1, . . . , c1):

(∗)





z0 = x0 + y0
z1 = x1 + y1 + c1
z2 = x2 + y2 + c2
...
zi = xi + yi + ci
...
zn−1 = xn−1 + yn−1 + cn−1,

(∗′)





c1 = x0y0
c2 = x1y1 + (x1 + y1)c1
...
ci = xi−1yi−1 + (xi−1 + yi−1)ci−1

...
cn−1 = xn−2yn−2 + (xn−2 + yn−2)cn−2

We claim that:

Theorem 6.1.1. The Multiplicative Complexity (MC) of the addition modulo
2n is exactly n− 1.
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Proof: This is is not obvious at the first sight, it may seem that it is 2(n − 1).
However in characteristic 2 we have:

xy + (x+ y)c = (x+ c)(y + c) + c

which allows to reduce the number of multiplications to 1 in each line: we obtain
(xi−1 + ci−1)(yi−1 + ci−1) + ci−1. Thus we have established it is at most n− 1.

To prove it is at least n − 1 we observe that the algebraic degree of the
ANF of the last output bit zn−1 as a function of the xi and the yi is always
n−1. This is easy to see from the formulas because each new carry ci contains a
multiplication of the previous carry ci−1 by new independent variables. Therefore
the ANF degree of zn−1 is n − 1 and at least n − 1 multiplications are needed
to compute it, and therefore at least n− 1 multiplications are needed overall.

7 Application to Cryptanalysis of GOST

It appears that we are able to provably minimize the number of non-linear
gates in a whole given cipher such as GOST, to a proven lower bound.

Now we can encode the whole GOST cipher as follows, which is based on the
concept of the multiplicative complexity, but some details can only be figured
out experimentally ( we also need to keep the equations sparse and not too
introduce too many additional variables):

1. For ¢, surprisingly, we use our encoding with 2(n − 1) multiplications, not
the optimal one from Theorem 6.1.1 (which gives comparable but slower
results).

2. For the multiplicative complexity we use the optimal implementations we
have obtained with our SAT solver software. Surprisingly, the attack is
slightly faster if we do NOT try to further to reduce the number of XORs
to the smallest possible value (which is an option in our software).

7.1 How To Solve It?

Now we will convert the system of equations obtained to SAT and solve it. The
best results are obtained as follows:

1. We use the Courtois-Bard-Jefferson converter. A Java source code and a
working Windows distribution of this program can be found at [12].

2. We use the well-known open-source SAT solver MiniSat 2.06. [24] we have
confirmed by a substantial amount of simulations and testing that with de-
fault options, MiniSat 2.06. is up to several times faster than later versions
of MiniSat and also much faster than CryptoMiniSat, which is another very
well-known SAT solver based on MiniSat.

From here we obtained the following result:

Fact 2 (Key Recovery for 4 Rounds and 2 KP). Given 2 P/C pairs for
4 rounds of GOST the 128-bit key can be recovered in time equivalent to 224

GOST encryptions on the same software platform (it takes a few seconds). The
memory requirements are very small.
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Justification: A ready windows executable program and all the necessary files
(one for each S-box), to do just that, together with the solver software, can be
obtained from the authors. The command line options used are:

axel.exe 1711 4 /ins2 /sat /fix0 /mcom /bard 0 0 1-100

This will run 100 randomized instances of the problem and display various
statistics including the median running time for 100 runs which is less than 10
seconds on a modern CPU.

7.2 How To Break the Full 32-round GOST

Several different black-box reduction methods to transform Fact 2 which only
break 4 rounds of GOST to a single-key attack on a full 32-round GOST
faster than brute force can be found in [17, 16]. The fastest of these attacks
has a time complexity of about 2216 GOST computations and requires 264 KP.

What’s Next? This paper can be seen as developing a sort of “basic technol-
ogy” which underpins a large number of software cryptographic attacks such as
Fact 2, which in turn are an essential and indispensable ingredient and building
block in an even larger number of cryptanalytic attacks (cf. [14, 17, 16]). Any im-
provement in this basic technology is therefore likely to improve many different
cryptographic attacks.

Currently no theory is able to give recommendations about how to produce
the fastest algebraic attack on a given cipher, and there are many competing
techniques for solving the NP-hard problems involved in these attacks, see for
example [13, 18, 27]. The crucial question is the choice of representation which
we can consider to be a form of ”Algebraization” of something such as a block
cipher which is precisely designed not to be easy to break by solving a system
of algebraic equations. We view it as a major practical problem in cryptography
and it should be seen also as a problem of optimisation. We point out that it
is a very closely related problem to the problem of efficient implementation of
cryptographic S-boxes and we use very similar techniques for both problems.

This is an area where there is a need to built sophisticated optimization
software. We should however note that these optimizations need to be run only
once and their running time is therefore irrelevant for the efficiency of the actual
key recovery attack which is an independent question.

We conjecture that the possibility to reduce the Multiplicative Complexity
(MC) of the whole cipher to the lowest possible number, and also other metrics
of circuit complexity, should play an important role in finding the best possible
attacks in algebraic cryptanalysis.
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8 Conclusion

In this paper we study the notion of Multiplicative Complexity (MC) which
minimizes the number of elementary non-linear operations (AND gates) at the
cost of linear operations, which can also minimized separately, as a second step.
We have implemented both these steps in an innovative way, where each problem
is converted to a satisfiability problem and solved by SAT solver software.

This type of methodology was previously applied to optimize linear circuits
[19] and bi-linear circuits [10] and even (with a lot more work) to derive the best
AES S-box yet found [5, 8] but it appears it is for the first time it is used to
optimise arbitrary non-linear S-boxes.

The key interesting point is that many SAT solvers will be able to detect when
the problem is not solvable, leading to results which are proven to be optimal, a
rare thing in complexity. Thus we are able to compute Multiplicative Complexity
(MC) exactly, for all sufficiently small circuits, and also to optimize the linear
parts exactly. Our method is practical though rather slow, so far we have been
able to optimize every 4x4 S-box we tried, but not many larger S-boxes. Yet it is
a unique and very powerful method, because all the results are optimal and one
could produce and publish a formal mathematical proof (automatically found
by the software) that they cannot be improved.

We have applied this notion to derive very efficient implementations of the
S-boxes in two ciphers, PRESENT and GOST. Our optimization is the key
ingredient in a new open-source bitslice implementation of PRESENT which we
have released [1].

Interestingly, from here we are able to provably minimize the number of
non-linear gates in a whole given cipher such as PRESENT or GOST, to a rather
unexpectedly low number such as 4 or 5 per S-box.

This has two sorts of applications in cryptography. First, such optimizations
are important in synthesis of implementations of circuits secure against side-
channel attacks, which is an important and hot research topic, see for example
[26, 23].

Moreover, we show how to use these optimizations to break the full-round
block cipher GOST and some variants [21, 25]. It is extremely rare to see a
real-life block cipher which can be broken faster than brute force.
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