Better than Brute-Force Optimized Hardware Architecture for Effcient Biclique Attacks on AES-128

Andrey Bogdanov*, Elif Bilge Kavun**, Christof Paar**, Christian Rechberger***, Tolga Yalcin**

* KU Leuven, Belgium, ** HGI-RUB, Germany, *** DTU, Denmark

Overview

- Meet-in-the-Middle with Bicliques
- Low Data Complexity Biclique Cryptanalysis of AES-128
- Optimized Brute Force Attack on AES-128
 - on FPGA
 - on ASIC
- Biclique Attack on AES-128
 - on FPGA
 - on ASIC
- Conclusion

- Allow all key bits affect a part of the cipher
- Stick to a structure to enable efficient enumeration of keys and states in this part
- Structure = **biclique!**

MITM with Bicliques

- Start modifications in the first round of AES-128
- Divide entire space of 2¹²⁸ keys into of 2¹²⁴ non-overlapping groups of 2⁴ keys
- Fix a base key and enumerate all other keys in the key group

- Modify base key at two byte positions independently (in 2² ways each)
- Follow propagation of modifications forwards and backwards

base computation

a-modification

→

 P_a

a- and b-modification

Recomputation at matching

Complexities:

- Computational complexity to precompute all states S_a and S_b in each key group: 0.3 AES-128 runs (first step).
- About 7.12 AES-128 runs to test all 16 keys in the key group (second step).
- Negligible computation complexity (2⁻³²) for false positives
- Overall computation complexity:

 $2^{124}(0.3 + 7.12) = 2^{126.89}$ AES executions.

• Data complexity:

Only 16 chosen plaintexts!!

Implementation

- FPGA target platform: RIVYERA Computing Cluster
 - 128 Xilinx Spartan3 XC3S500 high performance FPGAs
 - Equivalent computing power of 640 million system gates
- ASIC target technology: NANGATE
 ≫45 nm Generic Library

- Highly pipelined architecture for highest possible speed (11-stage pipeline within each AES round)
- Composite field inverters over GF((2²)²)² for s-boxes
- Register based (RAMless) design

 suitable for both FPGA and
 ASIC implementation

- Design implemented in two favors:
 - All identical rounds (for a fair comparison with respect to the original biclique advantage figures)
 - Partial matching in the last three rounds (for better area utilization – makes no difference for FPGA)
- Smaller and faster than the reported fastest design (362KGE vs 660KGE and 2.5GHz vs 2GHz)

* Pipeline register cost negligible for FPGA implementation – already part of the slice!

FPGA Performance

Slice	% FPGA	Maximum Freq	Keys tested/sec/FPGA
Utilization	Utilization	(MHz)	
26949 / 33278	80.98	263.16	526 x 10 ⁶

ASIC Performance

Core Area (GE)	Maximum Freq (MHz)	Average Power (mW)	Keys tested/mW
362181	2480	622.937	3.98 x 10 ⁶

Starting Point: Conceptual design

- One-to-one maps theory to implementation
- Based on precomputation of all base and biclique states
- Not feasible for hardware implementation
 - ➢ Requires too many RAMs
 - Interconnection and control logic too complex to allow an area and speed efficient design

New Approach: Recomputation

- On the fly calculation of base and biclique states
- Pipeline registers act as state storage media
 - No additional RAMs/registers required – virtual storage
- Similar to optimized brute force attack in structure
 - simpler control logic and interconnections

First "Biclique" Round:

- Serial AES implementation
- 8-bit (!) datapath
- Single S-Box

Second "Biclique" Round:

- Slightly modified serial AES implementation
- Still 8-bit (!) datapath
- Two S-Boxes
- Limited additional storage (shift registers) for biclique states

Third "Biclique" Round:

Third "Biclique" Round:

- Serial AES implementation on 4 separate paths
- Still 8-bit (!) datapath (on each path)
- Four S-Boxes
- Slightly more complex control logic
- More registers for double-buffering of biclique states (still shift registers with minimal cost
- Only covers the "SubBytes" stage of a full AES round the rest implemented as in a regular round

FPGA Performance

Slice	% FPGA	Maximum Freq*	Keys tested/sec/FPGA
Utilization	Utilization	(MHz)	
30720 / 33278	92.31	236.22	945 x 10 ⁶

ASIC Performance

Core Area (GE)	Maximum Freq (MHz)	Average Power (mW)	Keys tested/mW
163912	1548	211.545	7.32 x 10 ⁶

* Slower than the brute-force attack due to reduced number of pipeline stages

Conclusion

- The *fastest* brute-force attack implementation on AES-128
- The *first* biclique attack implementation on AES-128
 - Almost a factor of 2 speed and cost gain
 - Only 16 chosen plaintexts (w.r.t. 288 in the original biclique attack paper)
- Suitable for both FPGA and ASIC implementation
- Applicable to AES-192 and AES-256 as well