Multiplicative Complexity

Gate Complexity
Cryptography and Cryptanalysis

Nicolas T. Courtois ${ }^{1,2}$, Daniel Hulme ${ }^{1,2}$,
Theodosis Mourouzis ${ }^{1}$
1 University College London, UK
2 NP-Complete Ltd, UK

Linked in Account Type: Basic

Two Interesting Groups:

Your Groups (51) Reorder »

- Data ENCRYPTION

III

- IACR Cryptographers

Roadmap

- multiplicative complexity
- in algebra and algorithms
- cryptographic S-boxes
- some prominent cipher systems
- and their algebraic vulnerabilities
=> single key attacks on full 32-round GOST cipher

Glossary

- MC = Multiplicative Complexity, informally counting the number of multiplications in algorithms
- trying to do it with less
- $\mathrm{MM}=$ Matrix Multiplication

1805

Gauss in 1805

multiplying two complex numbers:

- naïve method
$(\mathrm{a}+\mathrm{bi}) \cdot(\mathrm{c}+\mathrm{di})=(\mathrm{ac}-\mathrm{bd})+(\mathrm{bc}+\mathrm{da}) \mathrm{i}$
- Gauss method:

P1 $=c(a+b)$
$P 2=a(d-c) \quad 3 X$
P3 $=\mathrm{b}(\mathrm{c}+\mathrm{d})$
$(a+b i) \cdot(c+d i)=(P 1-P 3)+(P 1+P 2) i$

MM = Matrix Multiplication

- entry size $=\mathrm{n}^{2}$
- naïve algorithm $=\mathrm{n}^{3}$
- proven lower bound of $n^{2 *} \log n[R a z 2002]$

Equivalence of MM and Other Problems

A speed up in MM will automatically result in a speed improvement of many other algorithms:

- Gauss: solving linear equations
- solving of non-linear polynomial equations...
- transitive closure of a graph or a relation on a finite set
- recognising if a word of length n belongs to a context-free language
- many many other...

\$\$\$ Importance of MM

- At least Hundreds of Megawatts * Years are spent in linear algebra operations
- Code breaking by intelligence agencies
- Google page ranking
- Computer graphics x millions of GPU chips
- Scientific computations
- Etc.

Best Known Exponents

- $\mathrm{O}\left(\mathrm{n}^{2.3755}\right)$ obtained in 1987 by Coppersmith-Winograd, best known until owe
- June 2010:

Andrew Stothers obtained $\mathrm{n}^{2.3737}$

- 2011: beaten by Virginia Vassilevska Williams [Berkeley] who obtained $\mathrm{n}^{2.3727}$
could we join the race???

Improving MM

Naïve $=n^{3}$

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad B=\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]
$$

Bi-Linear Non-Commutative Algorithm

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]
$$

Strassen [1969]

$$
\begin{aligned}
& \mathbf{M}_{1}:=\left(\mathbf{A}_{1,1}+\mathbf{A}_{2,2}\right)\left(\mathbf{B}_{1,1}+\mathbf{B}_{2,2}\right) \\
& \mathbf{M}_{2}:=\left(\mathbf{A}_{2,1}+\mathbf{A}_{2,2}\right) \mathbf{B}_{1,1} \\
& \mathbf{M}_{3}:=\mathbf{A}_{1,1}\left(\mathbf{B}_{1,2}-\mathbf{B}_{2,2}\right) \\
& \text { another bi-linear method } \\
& \mathbf{M}_{4}:=\mathbf{A}_{2,2}\left(\mathbf{B}_{2,1}-\mathbf{B}_{1,1}\right) \\
& \mathbf{M}_{5}:=\left(\mathbf{A}_{1,1}+\mathbf{A}_{1,2}\right) \mathbf{B}_{2,2} \\
& \mathbf{M}_{6}:=\left(\mathbf{A}_{2,1}-\mathbf{A}_{1,1}\right)\left(\mathbf{B}_{1,1}+\mathbf{B}_{1,2}\right) \\
& \mathbf{M}_{7}:=\left(\mathbf{A}_{1,2}-\mathbf{A}_{2,2}\right)\left(\mathbf{B}_{2,1}+\mathbf{B}_{2,2}\right) \\
& \text { 7X } \\
& \mathrm{C}_{1,1}=\mathrm{M}_{1}+\mathrm{M}_{4}-\mathrm{M}_{5}+\mathrm{M}_{7} \\
& \mathrm{C}_{1,2}=\mathrm{M}_{3}+\mathrm{M}_{5} \\
& \mathrm{C}_{2,1}=\mathrm{M}_{2}+\mathrm{M}_{4} \\
& \mathbf{C}_{2,2}=\mathbf{M}_{1}-\mathbf{M}_{2}+\mathbf{M}_{3}+\mathbf{M}_{6}
\end{aligned}
$$

Lower Complexity

- Strassen CAN be applied recursively.
- Result $=\mathrm{n}^{2.807}$

Brent Equations [1970]

Obtained directly from the tri-linear form.

$\forall i \forall j \forall k \forall l \forall m \forall n$

$$
\sum_{i=1}^{r} A_{i j}^{(i)} B_{k l}^{(i)} C_{m n}^{(i)}=\delta_{n i} \delta_{j k} \delta_{l m}
$$

3×3 Matrices

- Laderman [1976]; 23 multiplications.
- Doing 22 (or showing it cannot be done) is one of the most famous problems in computer science, 35 years, in every book about algorithms and data structures...

3×3 Matrices

In 2011 we solved the Brent equations with a SAT solver

We also prove that it is a NEW solution NOT isomorphic to Laderman and neither to Johnson-McLoughlin.

Courtois Bard and Hulme:
"A New General-Purpose Method to Multiply 3x3 Matrices
Using Only 23 Multiplications",
http://arxiv.org/abs/1108.2830

```
P01 := (a_2_3) * (-b_1_2+b_1_3-b_3_2+b_3_3);
P02 := (-a_1_1+a_1_3+a_3_1+a_3_2) * (b_2_1+b_2_2);
P03 := (a_1_3+a_2_3-a_3_3) * (b_3_1+b_3_2-b_3_3);
P04 := (-a_1_1+a_1_3) * (-b_2_1-b_2_2+b_3_1);
P05 := (a_1_1-a_1_3+a_3_3) * (b_3_1);
lol
P08 := (a_3_1) * (b_1_1-b_2_1);
P09 := (-a_2_1-a_2_2+a_2_3) * (b_3_3);
P10 := (a_1_1+a_2_1-a_3_1) * (b_1_1+b_1_2+b_3_3);
P11 := (-a_1_2-a_2_2+a_3_2) * (-b_2_2+b_2_3);
P12 := (a_3_3) * (b_3_2);
P13 := (a_2_2) * (b_1_3-b_2_3);
P14 := (a_2_1+a_2_2) * (b_1_3+b_3_3);
P15 := (a_1_1) * (-b_1_1+b_2_1-b_3_1);
P16 := (a_3_1) * (b_1_2-b_2_2);
P17 := (a_1_2) * (-b_2_2+b_2_3-b_3_3);
P18 := (-a_1_1+a_1_2+a_1_3+a_2_2+a_3_1) * (b_2_1+b_2_2+b_3_3);
P19 := (-a_1_1+a_2_2+a_3_1) * (b_1_3+b_2_1+b_3_3);
P20 := (-a_1_2+a_2_1+a_2_2-a_2_3-a_3_3) * (-b_3_3);
P21 := (-a_2_2-a_3_1) * (b_1_3-b_2_2);
P22 := (-a_1_1-a_1_2+a_3_1+a_3_2) * (b_2_1);
P23 := (a_1_1+a_2_3) * (b_1_2-b_1_3-b_3_1);
```


Our Solution

arxiv.org/abs/1108.2830

expand(P02+P04+P07-P15-P22-a_1_1*b_1_1-a_1_2*b_2_1-a_1_3*b_3_1);
expand(P01-P02+P03+P05-P07+P09+P12+P18-P19-P20-P21+P22+P23-
a_1_1*b_1_2-a_1_2*b_2_2-a_1_3*b_3_2);
expand(-P02-P07+P17+P18-P19-P21+P22-a_1_1*b_1_3-a_1_2*b_2_3-a_1_3*b_3_3);
expand(P06+P08+P10-P14+P15+P19-P23-a_2_1*b_1_1-a_2_2*b_2_1-a_2_3*b_3_1);
expand(-P01-P06+P09+P14+P16+P21-a_2_1*b_1_2-a_2_2*b_2_2-a_2_3*b_3_2);
expand(P09-P13+P14-a_2_1*b_1_3-a_2_2*b_2_3-a_2_3*b_3_3);
expand(P02+P04+P05+P07+P08-a_3_1*b_1_1-a_3_2*b_2_1-a_3_3*b_3_1);
expand(-P07+P12+P16-a_3_1*b_1_2-a_3_2*b_2_2-a_3_3*b_3_2);
expand(-P07-P09+P11-P13+P17+P20-P21-a_3_1*b_1_3-a_3_2*b_2_3-a_3_3*b_3_3);

```

\section*{MC of Arbitrary Functions}

\section*{Circuit Complexity}
- Multiplicative Complexity (MC) = minimum number of 2input AND gates, NOT and XOR gates go for free.
- Bitslice Gate Complexity (BGC) is the minimum number of 2-input gates of types XOR,OR,AND,OR needed.
- Gate Complexity (GC) is the minimum number of 2-input gates of types XOR,OR,AND,OR,NAND,NOR,NXOR.
- NAND Complexity (NC) = 2 -input NAND gates only


\section*{Motivation}

\section*{Motivation}
- silicon = \$\$
- software encryption = \$\$\$
- secure implementation in smart cards = \$ \(\$\)
- cryptanalysis

\section*{Crypto and MC}

\section*{Cryptography and MC}
- Most of energy and silicon in smart cards and SSL web servers is spent on cryptography which could be improved with "lower MC"
- (for all sorts of algorithms, RSA, ECC also symmetric ciphers use multiplications or AND gates etc.).


\section*{AES and MC}

\section*{AES}

\title{
Advanced Encryption Standard: \\ US government standard and a (de facto) \\ world standard for commercial applications.
}

\section*{Key sizes 128, 192 and 256 bits.}
- In 2000 NIST selected Rijndael as the AES.
- Serpent was second in the number of votes.

\section*{11 years later:}

In 2011, the year in which AES is becoming standard in every new Intel CPU... (i5 and above)
AES was broken (but really only in theory).

Today's most competitive ciphers are precisely PRESENT Serpent and GOST...
- Unhappily GOST was also broken in 2011.
- Serpent not very popular still.
- PRESENT is popular within research community but not widely used..
=> MC is at the heart of optimisation of ALL these ciphers.

\section*{AES S-box}
\[
x \rightarrow x^{-1}
\]

\section*{in GF(256)}

\section*{\(x \rightarrow x^{-1} \mathrm{n}=4\) [Boyar and Peralta 2008-9] eprint.iacr.org/2009/191/}
\begin{tabular}{|lll|}
\hline\(t_{1}=x_{1}+x_{2}\) & \(5 \times 1\) & \(t_{3}=x_{1}+t_{2}\) \\
\(t_{4}=t_{1} \times t_{3}\) & \(t_{2}=x_{3}\) & \(t_{4}=x_{2}+t_{4} \quad(*)\) \\
\(t_{6}=x_{2}+t_{2}\) & \(y_{4}=x_{3}+x_{4}\) \\
\(t_{8}=x_{3}+y_{2}\) & \(t_{7}=t_{6} \times t_{5}\) & \(y_{2}=x_{4}+t_{7} \quad(*)\) \\
\(y_{1}=t_{10}+t_{8}\) & \((*)\) & \(t_{9}=t_{3}+y_{2}\) \\
\(y_{3}=t_{12}+t_{1}\) & \((*)\) & \\
\hline
\end{tabular}

Fig. 1. Inversion in \(G F\left(2^{4}\right)\).

\section*{5 AND 11 XOR}

\section*{\(x \rightarrow x^{-1} \mathrm{n}=8\) or Full-Size AES S-box}
\[
\begin{array}{lll}
t_{2}=y_{12} \times y_{15} & t_{3}=y_{3} \times y_{6} & t_{4}=t_{3}+t_{2} \\
t_{5}=y_{4} \times x_{7} & t_{6}=t_{5}+t_{2} & t_{7}=y_{13} \times y_{16} \\
t_{8}=y_{5} \times y_{1} & t_{9}=t_{8}+t_{7} & t_{10}=y_{2} \times y_{7} \\
t_{11}=t_{10}+t_{7} & t_{12}=y_{9} \times y_{11} & t_{13}=y_{14} \times y_{17} \\
t_{14}=t_{13}+t_{12} & t_{15}=y_{8} \times y_{10} & t_{16}=t_{15}+t_{12} \\
t_{17}=t_{4}+t_{14} & t_{18}=t_{6}+t_{16} & t_{19}=t_{9}+t_{14} \\
t_{20}=t_{11}+t_{16} & t_{21}=t_{17}+y_{20} & t_{22}=t_{18}+y_{19} \\
t_{23}=t_{19}+y_{21} & t_{24}=t_{20}+y_{18} & \\
& & \\
& & \\
t_{25}=t_{21}+t_{22} & t_{26}=t_{21} \times t_{23} & t_{27}=t_{24}+t_{26} \\
t_{28}=t_{25} \times t_{27} & t_{29}=t_{28}+t_{22} & t_{30}=t_{23}+t_{24} \\
t_{31}=t_{22}+t_{26} & t_{32}=t_{31} \times t_{30} & t_{33}=t_{32}+t_{24} \\
t_{34}=t_{23}+t_{33} & t_{35}=t_{27}+t_{33} & t_{36}=t_{24} \times t_{35} \\
t_{37}=t_{36}+t_{34} & t_{38}=t_{27}+t_{36} & t_{39}=t_{29} \times t_{38} \\
t_{40}=t_{25}+t_{39} & & \\
& & \\
t_{41}=t_{40}+t_{37} & t_{42}=t_{29}+t_{33} & t_{43}=t_{29}+t_{40} \\
t_{44}=t_{33}+t_{37} & t_{45}=t_{42}+t_{41} & z_{0}=t_{44} \times y_{15} \\
z_{1}=t_{37} \times y_{6} & z_{2}=t_{33} \times x_{7} & z_{3}=t_{43} \times y_{16} \\
z_{4}=t_{40} \times y_{1} & z_{5}=t_{29} \times y_{7} & z_{6}=t_{42} \times y_{11} \\
z_{7}=t_{45} \times y_{17} & z_{8}=t_{41} \times y_{10} & z_{9}=t_{44} \times y_{12} \\
z_{10}=t_{37} \times y_{3} & z_{11}=t_{33} \times y_{4} & z_{12}=t_{43} \times y_{13} \\
z_{13}=t_{40} \times y_{5} & z_{14}=t_{29} \times y_{2} & z_{15}=t_{42} \times y_{9} \\
z_{16}=t_{45} \times y_{14} & z_{17}=t_{41} \times y_{8} &
\end{array}
\]

32x
eprint.iacr.org/2009/191/

Fig. 3. The middle non-linear section

\section*{Can we do 4 ?}

Boyar and Peralta has proven that 4 is impossible. Manual proof.

We can do this routinely in an automated way.

Two sorts of SAT solvers:
- stochastic
- complete
 some of these output a file which is a formal proof of UNSAT.

\section*{SAT Solvers} in the Cloud
the solve engine

Solve today's hardest optimization and constraint problems:
- chip design
- software verification
- logistics and scheduling
- portfolio management Solving. Made simple.
commercial but also for free...

\section*{PRESENT and MC}

\section*{Theorem [this paper]}

The Multiplicative Complexity of the PRESENT S-box is exactly 4.
(cheaper than AES at the same size which has 5)

\section*{Our Method}

Quantified SAT Problem:

\section*{\(\forall i \forall j \forall k \forall l \forall m \forall n\)}

Equations...

Convert to SAT and say that holds for sufficiently many small weight cases...
Generic very powerful method. We also use it for many other things...
But not so good for MM 23 result, Brent Equations are another sort of more "formal algebraic" method and can be seen as the same with a suitable choice of basis...

\section*{Bit-Slice Complexity}

\section*{PRESENT S-box}
- Naïve implementation = 39 gates
- Logic Friday [Berkeley] = 25 gates
- Our result = 14 gates.

\(\mathrm{T} 1=\mathrm{X} 2^{\wedge} \mathrm{X} 1 ; \mathrm{T} 2=\mathrm{X} 18 \mathrm{~T} 1 ; \mathrm{T} 3=\mathrm{X} 0^{\wedge} \mathrm{T} 2 ; \mathrm{Y} 3=\mathrm{X} 3^{\wedge} \mathrm{T} 3 ; \mathrm{T} 2=\mathrm{T} 1 \& T 3 ; T 1^{\wedge}=\mathrm{Y} 3 ; \mathrm{T} 2^{\wedge}=\mathrm{X} 1 ;\)
\(\mathrm{T} 4=\mathrm{X} 3\left|\mathrm{~T} 2 ; \mathrm{Y} 2=\mathrm{T} 1^{\wedge} \mathrm{T} 4 ; \mathrm{T} 2^{\wedge}=\wedge \mathrm{X} 3 ; ~ Y 0=Y 2^{\wedge} \mathrm{T} 2 ; \mathrm{T} 2\right|=\mathrm{T} 1 ; ~ \mathrm{Y} 1=\mathrm{T} 3^{\wedge} \mathrm{T} 2\);
Fig. 1. Our implementation of the PRESENT S-box with only 14 gates

\section*{PRESENT Software}

\section*{We have co-authored an open-source implementation of PRESENT, the best currently known.}
```

algebraic_attacks / present_bitslice.c
dd3845601204 266 loc 8.7 KB

```
```

 * Bit-Slice Implementation of PRESENT in pure standard C.
    ```
    * Bit-Slice Implementation of PRESENT in pure standard C.
    * v1.5 26/08/2011
    * v1.5 26/08/2011
    * The authors are
    * The authors are
    * Martin Albrecht <martinralbrechtegooglemail.coms
    * Martin Albrecht <martinralbrechtegooglemail.coms
    * Nicolas T, Courtois <firstinitial.family_nameecs.ucl,ac,uk=
    * Nicolas T, Courtois <firstinitial.family_nameecs.ucl,ac,uk=
    * Daniel Hulme firstname@satalia,com>
    * Daniel Hulme firstname@satalia,com>
    * Guangyan Song <firstname. lastnameegmail, coms
    * Guangyan Song <firstname. lastnameegmail, coms
    * This work was partly funded by the Technology Strategy Board
    * This work was partly funded by the Technology Strategy Board
    * in the United Kingdom under Project Mo 9626-58525.
    * in the United Kingdom under Project Mo 9626-58525.
    * MEW FEATURES in this version
    * MEW FEATURES in this version
    * - it contains an optimized sbox() using l5 only gates, instead of 39
    * - it contains an optimized sbox() using l5 only gates, instead of 39
    previously
    previously
    * - it now supports both 80-bit and 128-bit PRESENT
    * - it now supports both 80-bit and 128-bit PRESENT
    it contains test vectors for both versions
    it contains test vectors for both versions
    * This is a simple and straightforward implementation
    * This is a simple and straightforward implementation
    * it encrypts at the speed of
    * it encrypts at the speed of
    * this can be compared to for example
    * this can be compared to for example
    * 147 cycles per byte for optimized triple DES on the same CPU
```

 * 147 cycles per byte for optimized triple DES on the same CPU
    ```

\section*{Another S-box}

\section*{CTC2 cipher S-box.}

Theorem 3.1.
- The Multiplicative Complexity (MC) is exactly 3
- 3 AND + any number of XOR gates.
- The Bitslice Gate Complexity (BGC) is exactly \(8_{4}\)
- (allowed are XOR,OR,AND,OR).
- The Gate Complexity (GC) is exactly 6 *
- in addition allowing NAND,NOR,NXOR.
- The NAND Complexity (NC) is exactly 12
- only NAND gates and constants.

\section*{Optimal S-boxes}

\section*{Theory of Optimal S-boxes}

\section*{There is a theory of "optimal S-boxes" which are the best possible w.r.t. linear and differential criteria to build ciphers...}

On the Classification of 4 Bit S-Boxes

\author{
G. Leander \({ }^{1, \star}\) and A. Poschmann \({ }^{2}\) \\ \({ }^{1}\) GRIM, University Toulon, France \\ Gregor.Leander@rub.de \\ \({ }^{2}\) Horst-Görtz-Institute for IT-Security, Ruhr-University Bochum, Germany \\ poschmann@crypto.rub.de
}

\section*{Affine Equivalence}

\section*{Only 16 S-boxes are "good".}

On the Classification of 4 Bit S-Boxes
G. Leander \({ }^{1, \star}\) and A. Poschmann \({ }^{2}\)
\({ }^{1}\) GRIM, University Toulon, France
Gregor.Leander@rub.de
\({ }^{2}\) Horst-Görtz-Institute for IT-Security, Ruhr-University Bochum, Germany poschmann@crypto.rub.de

\section*{\(4 \times 4\) occur in Serpent, PRESENT, GOST, [AES...]}
not surprising that some of the S-boxes of the Serpent cipher are linear equivalent. Another advantage of our characterization is that it eases the highly non-trivial task of choosing good S-boxes for hardware dedicated ciphers a lot.

\section*{Evolution of S-boxes in GOST}

\section*{Strong evidence that Russian code makers DID read this paper about \(4 \times 4\) S-boxes...}

Table 2. Affine equivalence of known GOST S-Boxes and their inverses
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline S-box Set Name & \(S 1\) & \(S 2\) & \(S 3\) & \(S 4\) & \(S 5\) & \(S 6\) & \(S 7\) & \(S 8\) \\
\hline GostR3411_94_TestParamSet & 36 & 02 & 03 & 04 & & 06 & 35 & 08 \\
\hline - their inverses & & 02 & 03 & 04 & & 06 & & 08 \\
\hline GostR3411_94_CryptoProParamSet & & & \(L u 1\) & 14 & \(G_{10}\) & & \(G_{8}\) & \\
\hline - their inverses & & & \(L u 1\) & 14 & \(G_{10}\) & & \(G_{8}\) & \\
\hline Gost28147_TestParamSet & 21 & 21 & & & 25 & & & 28 \\
\hline - their inverses & 21 & 21 & & & 25 & & & 28 \\
\hline Gost28147_CryptoProParamSetA & 31 & 32 & 33 & \(G_{8}\) & 35 & 36 & 37 & 38 \\
\hline - their inverses & 31 & 32 & 33 & \(G_{8}\) & & & 37 & 38 \\
\hline Gost28147_CryptoProParamSetB & \(G_{13}\) & \(G_{13}\) & \(G_{13}\) & \(G_{11}\) & \(G_{7}\) & \(G_{7}\) & \(G_{11}\) & \(G_{6}\) \\
\hline - their inverses & \(G_{13}\) & \(G_{13}\) & \(G_{13}\) & \(G_{11}\) & \(G_{7}\) & \(G_{7}\) & \(G_{11}\) & \(G_{6}\) \\
\hline Gost28147_CryptoProParamSetC & \(G_{7}\) & \(G_{4}\) & \(G_{6}\) & \(G_{13}\) & \(G_{13}\) & \(G_{6}\) & \(G_{11}\) & \(G_{13}\) \\
\hline - their inverses & \(G_{7}\) & \(G_{4}\) & \(G_{6}\) & \(G_{13}\) & \(G_{13}\) & \(G_{6}\) & \(G_{11}\) & \(G_{13}\) \\
\hline Gost28147_CryptoProParamSetD & \(G_{13}\) & \(G_{13}\) & \(G_{13}\) & \(G_{4}\) & \(G_{12}\) & \(G_{4}\) & \(G_{13}\) & \(G_{7}\) \\
\hline - their inverses & \(G_{13}\) & \(G_{13}\) & \(G_{13}\) & \(G_{4}\) & \(G_{12}\) & \(G_{4}\) & \(G_{13}\) & \(G_{7}\) \\
\hline GostR3411_94_SberbankHashParamset & & & 74 & 75 & 76 & & 78 & \\
\hline - their inverses & & & 74 & 75 & 78 & & 76 & \\
\hline
\end{tabular}

\section*{In the world of Serious Cryptanalysis}


\section*{Beyond Crypto-1}
...AC can break "any cipher", if not too complex...
- We can break Hitag2 in 1 day
- with a SAT solver.

Cf. Nicolas T. Courtois, Sean O'Neil and JeanJacques Quisquater: "Practical Algebraic Attacks on the Hitag2 Stream Cipher",
In ISC 2009, Springer.

\section*{Algebraic Cryptanalysis [Shannon]}

Breaking a « good» cipher should require:
"as much work as solving a system of simultaneous equations in a large number of unknowns of a complex type"

\section*{Motivation}

Linear and differential cryptanalysis do require huge quantities of known/chosen plaintexts.

Algebraic Cryptanalysis:
allows for low data complexity attacks

\section*{What Makes Ciphers Vulnerable}

\section*{Design of Symmetric Ciphers}

A mix of sufficiently many highly non-linear functions....

\section*{DES Cipher}

\section*{DES}

At a first glance,
DES seems to be a very poor target:
there is (apparently)
no strong algebraic structure of any kind in DES

\section*{What's Left?}

\section*{Idea: (Very Sparse)}

DES has been designed to be implemented in hardware.
=> Very-sparse quadratic equations at the price of adding some 40 new variables per S-box.



\section*{Results on DES}

Nicolas T. Courtois and Gregory V. Bard: Algebraic Cryptanalysis of the D.E.S.
In IMA conference 2007, pp. 152-169, LNCS 4887, Springer.

See also:
eprint.iacr.org/2006/402/

Two Attacks on Reduced-Round DES

\section*{Circuit representation+ ANF-to-CNF + MiniSat 2.0.: \\ Key recovery for 6-round DES. Only 1 KP (!).}

Low data complexity.

\section*{Ready Software [for Windows \(\odot\) ]}

Equations generators for some ciphers: www.cryptosystem.net/aes/toyciphers.html

Some ready programs for algebraic cryptanalysis:
www.cryptosystem.net/aes/tools.html

\section*{GOST Cipher}

\section*{GOST 28148-89}
- The Official Encryption Standard of Russian Federation.
- Declassified in 1994.
- Best single-key attack:
- Shamir et al. \(2^{192}\)
- first talk on Monday at FSE 2012
- NEW attack by Courtois: \(2^{178}\)

- New advanced differential attack, submitted to eprint last week

\section*{GOST 28148-89}
- Very high level of security (256 bits)
- In theory secure for 200 years...
- Widely used, Crypto ++, Open SSL
- Central Bank of Russia and other Russian banks...
- not a commercial algorithm for short-term security such as DES...
- Very competitive, less gates that simplified DES, much less than AES
- [cf CHES 2010]
- 800 G.E. while AES-128 needs \(>3100\)
- In 2010 GOST was also submitted to ISO to become an international standard.

\section*{GOST 28148-89}

Table 1. Multiplicative Complexity for all known GOST S-Boxes
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline S-box Set Name & \(S 1\) & \(S 2\) & \(S 3\) & \(S 4\) & \(S 5\) & \(S 6\) & \(S 7\) & \(S 8\) \\
\hline GostR3411_94_TestParamSet & 4 & 5 & 5 & 5 & 5 & 5 & 4 & 5 \\
\hline GostR3411_94_CryptoProParamSet & 4 & 5 & 5 & 4 & 5 & 5 & 4 & 5 \\
\hline Gost28147_TestParamSet & 4 & 4 & 4 & 4 & 4 & 5 & 5 & 5 \\
\hline Gost28147_CryptoProParamSetA & 5 & 4 & 5 & 4 & 4 & 4 & 5 & 5 \\
\hline Gost28147_CryptoProParamSetB & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
\hline Gost28147_CryptoProParamSetC & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
\hline Gost28147_CryptoProParamSetD & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
\hline GostR3411_94_SberbankHashParamset & 4 & 4 & 4 & 5 & 5 & 4 & 4 & 4 \\
\hline
\end{tabular}

\section*{GOST-P}

A version of GOST with 8x PRESENT S-box - Only 650 G.E.
\(M C=4\) each exactly (as we already proved).

The authors have obtained in 2011 for their work precisely on PRESENT cipher and 4-bit S-boxes, an "IT Security Price" of \(100000 €\) which is the highest scientific price in Germany awarded by a private foundation.

\section*{Modular Addition}
+ modulo \(2^{32}\) in several ciphers: GOST, SNOW 2.0.
\[
(x, y) \mapsto z=x \boxplus y \quad \bmod 2^{n}
\]

Theorem 6.1.1. The Multiplicative Complexity (MC) of the addition modulo \(2^{n}\) is exactly \(n-1\).

\section*{Modular Addition}
\[
(x, y) \mapsto z=x \boxplus y \quad \bmod 2^{n}
\]

Theorem 6.1.1. The Multiplicative Complexity (MC) of the addition modulo \(2^{n}\) is exactly \(n-1\).


\section*{MC (+ Mod \(\left.2^{n}\right)=\mathrm{n}-1\) ???}

Theorem 6.1.1. The Multiplicative Complexity (MC) of the addition modulo \(2^{n}\) is exactly \(n-1\).

\section*{Proof:}
\[
\begin{aligned}
& x_{0} y_{0} \\
& x_{1} y_{1}+\left(x_{1}+y_{1}\right) c_{1}
\end{aligned}
\]
we have:
\[
\begin{array}{r}
\begin{array}{l}
x y+(x+y) c= \\
(x+c)(y+c)-c^{2}
\end{array} x_{i-1} y_{i-1}+\left(x_{i-1}+y_{i-1}\right) c_{i-1} \\
\text { 1× each } \\
=x_{n-2} y_{n-2}+\left(x_{n-2}+y_{n-2}\right) c_{n-2}
\end{array}
\]

\title{
Algebraic Complexity Reduction or How to Break Full 32-Round GOST
}

\section*{Algebraic Complexity Reduction [Courtois 2011]}

Definition [informal on purpose] Methods to substantially reduce the size of and the complexity of equations equations that appear throughout the computations...

How to lower the complexity?
- By adding new equations
- Which split the system into pieces and decrease the number of rounds

\section*{Black Box Algebraic Complexity Reduction [Courtois 2011]}

Methods which transform
an attack on 32 rounds of GOST
into an attack on 8 rounds of GOST with much less data.
Most but not all known algebraic complexity reductions are black-box reductions.

\section*{Example:}
- Given \(2^{32} \mathrm{KP}\) for the full 32-round GOST.
- Obtain 4 KP for 8 rounds of GOST.
- \(\quad\) This valid with probability \(2^{-128}\).

\section*{Is Algebraic Complexity Reduction Already Known?}

There exists several known attacks which enter the framework of Algebraic Complexity Reduction:
- Slide attacks
- Fixed Point Attacks
- Cycling Attacks
- Involution Attacks
- Guessing [Conditional Algebraic Attacks]
- Etc..

\section*{What's New?}

Slide / Fixed Point / Cycling / Guessing / Etc..

\section*{WHAT'S NEW?}
- We discovered several completely new attacks
which are exactly none of the above [though similar or related].
- Many new attacks are possible and many of these attacks were never studied because they generate only a few known plaintexts, and only in the last 5 years it became possible to design an appropriate last step for these attacks which is a low-data complexity key recovery attack [e.g. a software algebraic attack with a SAT solver].


\section*{ISO}
\begin{tabular}{|l|l|l|l|l|l|}
\hline rounds & 1 & 8 & 16 & 17 & 24 \\
\hline keys & \(k_{0} k_{1} k_{2} k_{3} k_{4} k_{8} k_{6} k_{7}\) & \(\mathrm{k}_{0} k_{1} k_{2} k_{3} k_{4} k_{8} k_{6} k_{7}\) & \(\mathrm{k}_{0} k_{1} k_{2} k_{3} k_{4} k_{8} k_{6} k_{7}\) & \(k_{7} k_{6} k_{8} k_{4} k_{3} k_{2} k_{1} \mathrm{k}_{0}\) \\
\hline
\end{tabular}

Table 1. Key schedule in GOST

We write GOST as the following functional decomposition (to be read from right to left) which is the same as used at Indocrypt 2008 [29]:
\[
\begin{equation*}
E n c_{k}=\mathcal{D} \circ \mathcal{S} \circ \mathcal{E} \circ \mathcal{E} \circ \mathcal{E} \tag{1}
\end{equation*}
\]

Where \(\mathcal{E}\) is exactly the first 8 rounds which exploits the whole 256 -bit key, \(S\) is a swap function which exchanges the left and right hand sides and does not depend on the key, and \(\mathcal{D}\) is the corresponding decryption function with \(\mathcal{E} \circ \mathcal{D}=\mathcal{D} \circ \mathcal{E}=I d\).

\section*{One Example of Black Box Reduction}

Two Encryptions with A Slide


स्रालम

\section*{Reduction}

\section*{New Attack on GOST}

Fact 3 (Consequences of Property W). If \(A\) satisfies the Assumption W above and defining \(B=\mathcal{E}(A)\) and \(C=\mathcal{E}(B)\) we have:
1. \(E n c_{k}(A)=D\). This is illustrated on the right hand side of Fig. 1.
2. \(E n c_{k}(B)=C\) This can be seen on the left hand side of Fig. 1.
\(2^{64} \mathrm{KP}\)
guess A,B
correct \(P=2^{-128}\)
\begin{tabular}{|c|c|c|c|}
\hline rounds & values & key size & \\
\hline & A & & \\
\hline \multirow[t]{2}{*}{8} & \(\mathcal{E} \quad \downarrow\) & \multirow[t]{2}{*}{256} & \\
\hline & \(B \quad B\) & & \\
\hline \multirow[t]{2}{*}{8} & \(\downarrow \mathcal{E} \quad \downarrow\) & \multirow[t]{2}{*}{256} & \\
\hline & \(C \quad C\) & & \\
\hline \multirow[t]{2}{*}{8} & \(\downarrow \mathcal{E} \square\) & \multirow[t]{2}{*}{256} & \\
\hline & \(D \quad D\) & & P_-2-128 \\
\hline 8 & \(\downarrow \mathcal{E} \quad \mathcal{D}\) & 256 & \(=2\) \\
\hline \multicolumn{2}{|c|}{\(D \bowtie \bar{D}\)} & & \(=>\) \\
\hline 8 & D & 256 & 4 pairs \\
\hline bits \(\overline{64}\) & & & 8 roun \\
\hline
\end{tabular}

Fig. 1. A black-box "Algebraic Complexity Reduction" from 32 to 8 rounds of GOST

Many new single-key attacks on full 32-round GOST...

\section*{cf. eprint.iacr.org/2011/626/}
\begin{tabular}{|c|}
\hline Reduction Summary \\
\hline Reduction cf. \\
\hline Type \\
\hline From (data 32 R) \\
\hline Obtained (for 8R) \\
\hline Valid w. prob. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Red. 189 & ed. 2 § & . 3 & d. 4 §1 & Red 5 §12 \\
\hline \multicolumn{2}{|l|}{1x Internal Reflection} & & ction & Fixed Point \\
\hline \multicolumn{2}{|c|}{\(2^{32} \mathrm{KP}\)} & \multicolumn{3}{|c|}{\(2^{0.1} \mathrm{KP}\)} \\
\hline 2 KP & 3 KP & 3 KP & 4 KP & 2 KP \\
\hline \(2^{-96}\) & \(2^{-128}\) & \(2^{-90}\) & \(2^{-128}\) & \(2^{-64}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline Last step \\
Cases \(\in\) Inside \\
Then Fact cf. \\
Time to break 8 R \\
\hline Storage bytes \\
\hline\(\#\) false positives \\
\hline Attack time 32 R \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\hline \text { MIM } \\
2^{128} \\
\text { Fact } 8 \\
2^{128}
\end{gathered}
\]} & \multicolumn{5}{|c|}{Guess + Algebraic} \\
\hline & \(2^{128}\) & \multicolumn{3}{|c|}{\(2^{64}\)} & \(2^{128}\) \\
\hline & \[
\begin{gathered}
\text { Fact } 4 \\
2^{152}
\end{gathered}
\] & \multicolumn{3}{|c|}{Fact 5
\[
2^{120}
\]} & Fact 4 \(2^{152}\) \\
\hline \(2^{132}\) & - & - & \multicolumn{2}{|c|}{\[
2^{07}
\]} & - \\
\hline \multicolumn{2}{|l|}{\(2^{224}\)} & \(2^{192}\) & & & \(2^{192}\) \\
\hline \(2^{224}\) & \(2^{248}\) & \(2^{248}\) & \(2^{216}\) & \(2^{248}\) & \(2^{216}\) \\
\hline
\end{tabular}

75
©Nicolas T. Courtois 2012
satalia```

