Solving Discrete Logarithms in
Smooth-Order Groups with CUDA

WATERLOO Ryan Henry
lan Goldberg

cs.uwaterloo.ca

Canadi

Jes
CRsne V7 Ontario

Solving D i SC rete Log a rith m s in Smooth-Order Groups with CUDA

Definition

Let G be a cyclic group of order g and let g € G be a generator.
Given a € G, the discrete logarithm (DL) problem is to find

X € Zg such that g* = a.

WATERLOO |

Solving D i SC rete Log a rith m s in Smooth-Order Groups with CUDA

Definition

Let G be a cyclic group of order g and let g € G be a generator.
Given a € G, the discrete logarithm (DL) problem is to find

X € Zg such that g* = a.

Why do we care?

» Computing DLs is apparently difficult for classical
computers

» Inverse problem (modular exponentiation) is easy
» Many cryptographic protocols exploit this asymmetry

WATERLOO |

Solving Discrete Logarithms in S m Oot h - O rd e r G ro u pS with CUDA

Definition

An integer nis called B-smooth if each of its prime factors is
bounded above by B. A smooth-order group is just a group
whose order is B-smooth for some “suitably small” value of B.

WATERLOO |

Solving Discrete Logarithms in S m Oot h - O rd e r G ro u pS with CUDA

Definition

An integer nis called B-smooth if each of its prime factors is
bounded above by B. A smooth-order group is just a group
whose order is B-smooth for some “suitably small” value of B.

Why do we care?
» If p(N) is B-smooth, then Zjy, has smooth order
» Many DL-based cryptographic protocols work in Zj,

» Pollard’s rho algorithm (plus Pohlig-Hellman) solves DLs in
time proportional to smoothness of group order

WATERLOO |

Solving Discrete Logarithms in Smooth-Order Groups with C U DA

Definition

The Compute Unified Device Architecture (CUDA) is Nvidia’s
parallel computing architecture. It enables developers to use
CUDA-enabled Nvidia GPUs for general purpose computing.

WATERLOO |

Solving Discrete Logarithms in Smooth-Order Groups with C U DA

Definition

The Compute Unified Device Architecture (CUDA) is Nvidia’s
parallel computing architecture. It enables developers to use
CUDA-enabled Nvidia GPUs for general purpose computing.

Why do we care?

» Nvidia GPUs are widely deployed, and offer better
price-to-GFLOP ratio than CPUs

» Modern GPUs have many cores and support highly
parallel computation

» Pollard’s rho algorithm is extremely parallelizable

WATERLOO |

In this presentation, we...

» describe Pollard’s rho algorithm and its parallel variant

WATERLOO |

In this presentation, we...

» describe Pollard’s rho algorithm and its parallel variant

» discuss CUDA and GP GPU computing on Nvidia GPUs

WATERLOO |

In this presentation, we...

» describe Pollard’s rho algorithm and its parallel variant
» discuss CUDA and GP GPU computing on Nvidia GPUs

» present our implementation of modular multiplication
and parallel rho in CUDA and analyze its performance

WATERLOO |

In this presentation, we...

» describe Pollard’s rho algorithm and its parallel variant
» discuss CUDA and GP GPU computing on Nvidia GPUs

» present our implementation of modular multiplication and
parallel rho in CUDA and analyze its performance

» point out a simple attack on Boudot’s zero-knowledge
range proofs

WATERLOO |

In this presentation, we...

v

describe Pollard’s rho algorithm and its parallel variant
» discuss CUDA and GP GPU computing on Nvidia GPUs

» present our implementation of modular multiplication and
parallel rho in CUDA and analyze its performance

» point out a simple attack on Boudot’s zero-knowledge
range proofs

» construct and analyze trapdoor discrete logarithm
groups

WATERLOO |

Part I: Pollard’s rho

Pollard’s rho algorithm (1/4)

Problem

Given g, h € G, compute the discrete logarithm x € Z, of h with
respect to g.

WATERLOO |

Pollard’s rho algorithm (1/4)

Problem

Given g, h € G, compute the discrete logarithm x € Z, of h with
respect to g.

Key observation:
» Consider elements g?h? € G and search for collisions

» Since g h% = g2h2 — g&~2% = h2=b1 we have
ai—ap = X (bo—by) mod n = x = (a; —a)(bo— by)~" mod n

» Birthday paradox: about /7 n/2 selections should
suffice = expected runtime and storage in ©(v/n)

WATERLOO |

Pollard’s rho algorithm (2/4)

Problem

Given g, h € G, compute the discrete logarithm x € Z, of h with
respect to g.

Pollard’s idea:
» Walk through G using iteration function f: G — G,
f(gaihbi) = g+ i+

» Collisions = cycles, which are cheap to detect

» [f iteration function behaves “randomly enough”, then
expected runtime is in ©(y/n) and storage is in ©(1)

WATERLOO |

Pollard’s rho algorithm (3/4)

g%+t pPit

A2 pbite

gPi+3pbit3

GBi—1 i1

g@2 b2

@1 hb1

g0 hbo

WATERLOO |

Pollard’s rho algorithm (3/4)

g%+t pPit

A2 pbite
Pt Pity
342 i a; b;.
Calit g3 Wi g%i+3 h0i+3
SRirbi g2i+3pbi+3
aj b;
OREEN gii=1hti—1 8
\ AY
) \
g%2nb2 . ‘\
g@2 b2
g1 hP1
g%nbo ga1 hb1

g0 hbo

WATERLOO |

P bt

gli+2nbive

GPi+3nbiva

g%inbi

i1 pbi-1

gPenb2

Pkl

g%nbo

Pollard’s rho algorithm (4/4)

Problem
Given g, h € G, compute the discrete logarithm x € Z, of h with
respect to g.

van Oorschot’s and Wiener’s idea:

» Define a distinguished point (DP) as any point with some
cheap-to-detect property (e.g., m trailing zeros)

» Run W client threads in parallel, each reporting DPs to a
central server that checks for collisions

» Expected runtime is in ©(y/n /W)

WATERLOO |

Part lI: GPUs and CUDA

SMPs and CUDA cores

Fermi architecture
» GPU has several streaming

(Instruction cache)

\ Warp scheduler \ \ Warp scheduler \

multiprocessors (SMP)

» Our Tesla M2050 cards each | Dispatchunit || Dispatchunit |

have 14 SMPs ¥ ¥ i

» SIMD architecture Register file (21° x 32-bit) ‘
v ¥

[Core || Core || | Core || Core |

| Core || Core || || Core || Core |

[core |[Core || |[Core || Core |

\:Core || Core |

| Core || Core || || Core || Core |

[Core || Core || || Core |[Core

(Interconnect network \
64 KB memory / L1 cache ‘ /

€ Uniform cache)

f
|
|
i
|
i
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
i
|
| || Core || Core || || Core || Core |
|
i
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
i
|
|
|
|
i

WATERLOO |

SMPs and CUDA cores

Fermi architecture
» GPU has several streaming

(Instruction cache)

\ Warp scheduler \ \ Warp scheduler \

multiprocessors (SMP)

» Our Tesla M2050 cards each | Dispatchunit || Dispatchunit |

have 14 SMPs ¥ ¥ i

» SIMD architecture Register file (21° x 32-bit) ‘
v ¥

CUDA Core (core) (core) | ([Gore) Gore

Dispatch port)
[Operand collector |

| Core || Core || || Core || Core |

[core |[Core || |[Core || Core |

‘/FPU unit\‘ \ INT unit \

| Result queue |

\:Core || Core |

| Core || Core || || Core || Core |

[Core || Core || || Core |[Core

(Interconnect network \
64 KB memory / L1 cache ‘ /

€ Uniform cache)

f
|
|
i
|
i
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
i
|
| || Core || Core || || Core || Core |
|
|
T
|
|
|
|
|
|
|
i
|
|
|
|
|
|
i
|
|
|
|
i

WATERLOO |

CUDA memory hierarchy

» Developer manages

- memory explicitly
L l . » 1 clock pulse for shared

}'Shared memory ~ L1cache | memory and L1 cache
N — I ,,,,,, . » =~ 300 clock pulses for
~ L2cache - Local RAM
— I ,,,,,,,,,,,,, . » Many more clock pulses

for system RAM

WATERLOO |

Tesla M2050

Nvidia Tesla M2050 GPU cards:

» Based on Fermi architecture
» 14 SMPs x 32 cores/smp = 448 cores
(each running at 1.55 GHz)
» 215 x 32-bit registers /smp
» Configurable: 64 KB shared
memory / L1 cache

» 3 GB GDDRS5 of Local RAM

amazoncom. price: 1,299.00 USD

Our experiments used a host PC with:

» Intel Xeon E5620 quad core (2.4 GHz)
» 2 x 4GB of DDR3-1333 RAM

» 2x Tesla M2050 GPU cards

WATERLOO |

Part lll: Implementation

CUDA modular multiplication (1/2)

» lteration function for Pollard rho:
gx if0<x<{
f)=¢ x®ifd<x<%
2
hx if g <x<q

» Need fast, multiprecision modular multiplication to
solve DLs in Zy,

» We used Kog et al’s CIOS algorithm for Montgomery
multiplication

» Low auxiliary storage = lots of threads

» We do one thread per multiplication

WATERLOO |

CUDA modular multiplication (2/2)

Table: k-bit modular multiplications per second and (amortized)
time per k-bit modular multiplication on a single Tesla M2050.

Bit length Time per trial Amortized time| Modmults

of modulus + std dev per modmult per second
192 30.538s+ 4ms 1.19ns ~ 840,336,000
256 50.916s+ 5ms 1.98ns ~ 505,050,000
512 186.969s+ 4ms 7.30ns ~ 136,986,000
768 4926 s+200ms 19.24ns ~ 51,975,000
1024 2304.5 s+300ms 90.02ns ~ 11,108,000

» Larger k = each multiplication takes longer
—> can compute fewer multiplications in parallel

WATERLOO |

CUDA Pollard rho (1/2)

Goal

Compute discrete logarithms modulo ky-bit RSA numbers
N = pg with 2%5-smooth totient.

Our implementation:
Optimized for ky = 1536 and kg ~ 55
Assumes that the factorization of p — 1 and g — 1 is known

Uses Pohlig-Hellman approach to decompose problem to
kg-bit subproblems

Distinguished points: at least 10 trailing zeros in binary
(Montgomery) representation

v

v

v

v

WATERLOO |

CUDA Pollard rho (2/2)

Time to compute discrete logarithm

1000

T T : I |

= 57865 038
@ 100 F —
=1 E I
o o L .
£ . .
o
U -

10 I50 '52 -54 ;6 -8
’ 2 2 2 53

B (smoothness of totient)

» Expected cost per B-smooth DL is in ©(v/B)
768

> Each card solves [z such DLs — runtime in ©(VB/lgB)

» B~ 2% — runtime roughly proportional to B%3°

WATERLOO |

Part IV: Implications

Implications

What are the implications for existing DL-based
cryptosystems?

In most cases, there are no real implications.

WATERLOO |

Implications

What are the implications for existing DL-based
cryptosystems?

In most cases, there are no real implications.

So why am | speaking at SHARCS?

» Cost estimates for cryptographically interesting
computations are useful

» Construct trapdoor discrete logarithm groups
» Potential attacks on some zero-knowledge proofs

» Menezes: duplicate signature key selection (DSKS)
attacks on RSA

WATERLOO |

Attack on zero-knowledge “range proofs”

Problem

For a fixed generator g € G and commitment C = g*, prove (in
zero-knowledge, with knowledge of x) that a < x < b.

WATERLOO |

Attack on zero-knowledge “range proofs’

Problem

For a fixed generator g € G and commitment C = g*, prove (in
zero-knowledge, with knowledge of x) that a < x < b.

Lagrange’s four square theorem: An integer x € Z is
nonnegative if and only if it can be expressed as the sum of (at
most) four integer squares.

» Idea: Compute C, = C/g? = g*2and Cp = g°/C = g*~*,
then prove that C, and C, each commit to a sum of four
squares.

WATERLOO |

Attack on zero-knowledge “range proofs”

Problem

For a fixed generator g € G and commitment C = g*, prove (in
zero-knowledge, with knowledge of x) that a < x < b.

Lagrange’s four square theorem: An integer x € Z is
nonnegative if and only if it can be expressed as the sum of (at
most) four integer squares.

» Idea: Compute C, = C/g? = g*2and Cp = g°/C = g*~*,
then prove that C, and C, each commit to a sum of four
squares.

» Soundness relies on order of G being hidden, which it
usually is not!

WATERLOO |

Attack on zero-knowledge “range proofs”

Problem

For a fixed generator g € G and commitment C = g*, prove (in
zero-knowledge, with knowledge of x) that a < x < b.

Lagrange’s four square theorem: An integer x € Z is
nonnegative if and only if it can be expressed as the sum of (at
most) four integer squares.

» Idea: Compute C, = C/g? = g*2and Cp = g°/C = g*~*,
then prove that C, and C, each commit to a sum of four
squares.

» Soundness relies on order of G being hidden, which it
usually is not!

» Move proof into Zj, for RSA number N = pq (whose
factorization is kept secret from the prover)

WATERLOO |

Trapdoor discrete logarithm groups (1/3)

Idea

Work modulo an RSA modulus N = pg such that p — 1 and
q — 1 are B-smooth.

» Public key: N
» Private key: p, g and the factorization of p — 1 and q — 1

WATERLOO |

Trapdoor discrete logarithm groups (1/3)

Idea
Work modulo an RSA modulus N = pg such that p — 1 and
q — 1 are B-smooth.

» Public key: N

» Private key: p, g and the factorization of p — 1 and q — 1

Trapdoor DL cost

» With trapdoor key: DL computation takes @(B—g’ \/§>
highly parallelizable work

» Let 14 be the number of (Ig N/2)-bit modular multiplications
computable per core-second, then trapdoor DL runtime is

_loN ¢-VB

T 1gB Wy
for some constant c.

seconds,

WATERLOO |

Trapdoor discrete logarithm groups (2/3)

Idea
Work modulo an RSA modulus N = pg such that p — 1 and
q — 1 are B-smooth.

» Public key: N

» Private key: p, g and the factorization of p—1 and q — 1

Non-trapdoor DL cost (1/2)

» Without trapdoor key: Best approach seems to be
factoring to recover private key!

» Pollard’s p — 1 algorithm: Factors B-smooth numbers
with O(B) work

» p — 1 attack is inherently serial! Parallelism won’t help
much!

WATERLOO |

Trapdoor discrete logarithm groups (2/3)

Idea
Work modulo an RSA modulus N = pg such that p — 1 and
q — 1 are B-smooth.

» Public key: N

» Private key: p, g and the factorization of p — 1 and q — 1

Non-trapdoor DL cost (2/2)

» ECM, QS, et al.: highly parallelizable and subexponential
cost, but cost scales with Ig N instead of B

» For 1536-bit RSA moduli, cross over point occurs when
V. B~ 28

» Need V > 230 cores to do faster non-trapdoor DL with
other algorithms

WATERLOO |

Trapdoor discrete logarithm groups (3/3)

Idea

Work modulo an RSA modulus N = pg such that p — 1 and
q — 1 are B-smooth.

» Public key: N
» Private key: p, g and the factorization of p — 1 and q — 1

Practical security analysis

Ba2% .)> 1700 years for non-trapdoor DL
<2 minutes for trapdoor DL

» These are wall-clock times!

WATERLOO |

Part V: Conclusion

Summary

» Used CUDA to solve DLs in smooth-order groups

» Up to about 2°8-smooth 1536-bit RSA numbers in under 5
minutes on 2 x Tesla M2050

» > 100 million 768-bit modular multiplications per second
» > 1.7 billion 192-bit modular multiplications per second

» Extrapolating: 28°-smooth DL should be feasible in ~ 23
hours on same Tesla cards (with a bit more system RAM)
» Constructed and analyzed trapdoor discrete logarithm
groups

» Proposed simple attack on (naively implementations of)
Boudot’s zero-knowledge range proofs

WATERLOO |

All of our code is free and open source:

http://crysp.uwaterloo.ca/software/

http://crysp.uwaterloo.ca/software/

	Title slide
	Deconstructing the title
	Pollard's rho
	GPUs and CUDA
	Implementation
	Implications
	Conclusion

