
Solving Discrete Logarithms in
Smooth-Order Groups with CUDA

Ryan Henry
Ian Goldberg



Solving Discrete Logarithms in Smooth-Order Groups with CUDA

Definition
Let G be a cyclic group of order q and let g ∈ G be a generator.
Given α ∈ G, the discrete logarithm (DL) problem is to find
x ∈ Zq such that gx = α.

Why do we care?
I Computing DLs is apparently difficult for classical

computers
I Inverse problem (modular exponentiation) is easy
I Many cryptographic protocols exploit this asymmetry

01 / 21



Solving Discrete Logarithms in Smooth-Order Groups with CUDA

Definition
Let G be a cyclic group of order q and let g ∈ G be a generator.
Given α ∈ G, the discrete logarithm (DL) problem is to find
x ∈ Zq such that gx = α.

Why do we care?
I Computing DLs is apparently difficult for classical

computers
I Inverse problem (modular exponentiation) is easy
I Many cryptographic protocols exploit this asymmetry

01 / 21



Solving Discrete Logarithms in Smooth-Order Groups with CUDA

Definition
An integer n is called B-smooth if each of its prime factors is
bounded above by B. A smooth-order group is just a group
whose order is B-smooth for some “suitably small” value of B.

Why do we care?
I If ϕ(N) is B-smooth, then Z∗

N has smooth order
I Many DL-based cryptographic protocols work in Z∗

N
I Pollard’s rho algorithm (plus Pohlig-Hellman) solves DLs in

time proportional to smoothness of group order

02 / 21



Solving Discrete Logarithms in Smooth-Order Groups with CUDA

Definition
An integer n is called B-smooth if each of its prime factors is
bounded above by B. A smooth-order group is just a group
whose order is B-smooth for some “suitably small” value of B.

Why do we care?
I If ϕ(N) is B-smooth, then Z∗

N has smooth order
I Many DL-based cryptographic protocols work in Z∗

N
I Pollard’s rho algorithm (plus Pohlig-Hellman) solves DLs in

time proportional to smoothness of group order

02 / 21



Solving Discrete Logarithms in Smooth-Order Groups with CUDA

Definition
The Compute Unified Device Architecture (CUDA) is Nvidia’s
parallel computing architecture. It enables developers to use
CUDA-enabled Nvidia GPUs for general purpose computing.

Why do we care?
I Nvidia GPUs are widely deployed, and offer better

price-to-GFLOP ratio than CPUs
I Modern GPUs have many cores and support highly

parallel computation
I Pollard’s rho algorithm is extremely parallelizable

03 / 21



Solving Discrete Logarithms in Smooth-Order Groups with CUDA

Definition
The Compute Unified Device Architecture (CUDA) is Nvidia’s
parallel computing architecture. It enables developers to use
CUDA-enabled Nvidia GPUs for general purpose computing.

Why do we care?
I Nvidia GPUs are widely deployed, and offer better

price-to-GFLOP ratio than CPUs
I Modern GPUs have many cores and support highly

parallel computation
I Pollard’s rho algorithm is extremely parallelizable

03 / 21



In this presentation, we...

I describe Pollard’s rho algorithm and its parallel variant

I discuss CUDA and GP GPU computing on Nvidia GPUs

I present our implementation of modular multiplication and
parallel rho in CUDA and analyze its performance

I point out a simple attack on Boudot’s zero-knowledge
range proofs

I construct and analyze trapdoor discrete logarithm
groups

04 / 21



In this presentation, we...

I describe Pollard’s rho algorithm and its parallel variant

I discuss CUDA and GP GPU computing on Nvidia GPUs

I present our implementation of modular multiplication and
parallel rho in CUDA and analyze its performance

I point out a simple attack on Boudot’s zero-knowledge
range proofs

I construct and analyze trapdoor discrete logarithm
groups

04 / 21



In this presentation, we...

I describe Pollard’s rho algorithm and its parallel variant

I discuss CUDA and GP GPU computing on Nvidia GPUs

I present our implementation of modular multiplication
and parallel rho in CUDA and analyze its performance

I point out a simple attack on Boudot’s zero-knowledge
range proofs

I construct and analyze trapdoor discrete logarithm
groups

04 / 21



In this presentation, we...

I describe Pollard’s rho algorithm and its parallel variant

I discuss CUDA and GP GPU computing on Nvidia GPUs

I present our implementation of modular multiplication and
parallel rho in CUDA and analyze its performance

I point out a simple attack on Boudot’s zero-knowledge
range proofs

I construct and analyze trapdoor discrete logarithm
groups

04 / 21



In this presentation, we...

I describe Pollard’s rho algorithm and its parallel variant

I discuss CUDA and GP GPU computing on Nvidia GPUs

I present our implementation of modular multiplication and
parallel rho in CUDA and analyze its performance

I point out a simple attack on Boudot’s zero-knowledge
range proofs

I construct and analyze trapdoor discrete logarithm
groups

04 / 21



Part I: Pollard’s rho



Pollard’s rho algorithm (1/4)

Problem
Given g,h ∈ G, compute the discrete logarithm x ∈ Zn of h with
respect to g.

Key observation:
I Consider elements gahb ∈ G and search for collisions

I Since ga1hb1 = ga2hb2 =⇒ ga1−a2 = hb2−b1 , we have
a1−a2 ≡ x (b2−b1) mod n =⇒x ≡ (a1−a2)(b2−b1)−1 mod n

I Birthday paradox: about
√
π n/2 selections should

suffice =⇒ expected runtime and storage in Θ(
√

n )

05 / 21



Pollard’s rho algorithm (1/4)

Problem
Given g,h ∈ G, compute the discrete logarithm x ∈ Zn of h with
respect to g.

Key observation:
I Consider elements gahb ∈ G and search for collisions

I Since ga1hb1 = ga2hb2 =⇒ ga1−a2 = hb2−b1 , we have
a1−a2 ≡ x (b2−b1) mod n =⇒x ≡ (a1−a2)(b2−b1)−1 mod n

I Birthday paradox: about
√
π n/2 selections should

suffice =⇒ expected runtime and storage in Θ(
√

n )

05 / 21



Pollard’s rho algorithm (2/4)

Problem
Given g,h ∈ G, compute the discrete logarithm x ∈ Zn of h with
respect to g.

Pollard’s idea:
I Walk through G using iteration function f : G→ G,

f (gai hbi ) = gai+1hbi+1

I Collisions =⇒ cycles, which are cheap to detect

I If iteration function behaves “randomly enough”, then
expected runtime is in Θ(

√
n ) and storage is in Θ(1)

06 / 21



Pollard’s rho algorithm (3/4)

gai hbi g
aj h

bj

g
aj−1 h

bj−1

gai+3 hbi+3

gai+2 hbi+2

gai+1 hbi+1

gai−1 hbi−1

ga2 hb2

ga1 hb1

ga0 hb0

gai hbi g
aj h

bj

g
aj−1 h

bj−1

gai+3 hbi+3

gai+2 hbi+2

gai+1 hbi+1

gai−1 hbi−1

ga2 hb2

ga1 hb1

ga0 hb0

gai hbi g
aj h

bj

g
aj−1 h

bj−1

gai+3 hbi+3

gai+2 hbi+2

gai+1 hbi+1

gai−1 hbi−1

ga2 hb2

ga1 hb1

ga0 hb0

07 / 21



Pollard’s rho algorithm (3/4)

gai hbi g
aj h

bj

g
aj−1 h

bj−1

gai+3 hbi+3

gai+2 hbi+2

gai+1 hbi+1

gai−1 hbi−1

ga2 hb2

ga1 hb1

ga0 hb0

gai hbi g
aj h

bj

g
aj−1 h

bj−1

gai+3 hbi+3

gai+2 hbi+2

gai+1 hbi+1

gai−1 hbi−1

ga2 hb2

ga1 hb1

ga0 hb0

gai hbi g
aj h

bj

g
aj−1 h

bj−1

gai+3 hbi+3

gai+2 hbi+2

gai+1 hbi+1

gai−1 hbi−1

ga2 hb2

ga1 hb1

ga0 hb0

07 / 21



Pollard’s rho algorithm (4/4)

Problem
Given g,h ∈ G, compute the discrete logarithm x ∈ Zn of h with
respect to g.

van Oorschot’s and Wiener’s idea:
I Define a distinguished point (DP) as any point with some

cheap-to-detect property (e.g., m trailing zeros)

I Run Ψ client threads in parallel, each reporting DPs to a
central server that checks for collisions

I Expected runtime is in Θ
(√

n /Ψ
)

08 / 21



Part II: GPUs and CUDA



SMPs and CUDA cores
Fermi architecture

I GPU has several streaming
multiprocessors (SMP)

I Our Tesla M2050 cards each
have 14 SMPs

I SIMD architecture

Instruction cache

Warp scheduler Warp scheduler

Dispatch unit Dispatch unit

Register file (215 × 32-bit)

Interconnect network

64 KB memory / L1 cache

Uniform cache

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST

SFU

SFU

SFU

SFU

09 / 21



SMPs and CUDA cores
Fermi architecture

I GPU has several streaming
multiprocessors (SMP)

I Our Tesla M2050 cards each
have 14 SMPs

I SIMD architecture

CUDA Core
Dispatch port

Operand collector

FPU unit INT unit

Result queue

Instruction cache

Warp scheduler Warp scheduler

Dispatch unit Dispatch unit

Register file (215 × 32-bit)

Interconnect network

64 KB memory / L1 cache

Uniform cache

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST

SFU

SFU

SFU

SFU

09 / 21



CUDA memory hierarchy

Thread

Shared memory L1 cache

L2 cache

Local RAM

I Developer manages
memory explicitly

I 1 clock pulse for shared
memory and L1 cache

I ≈ 300 clock pulses for
Local RAM

I Many more clock pulses
for system RAM

10 / 21



Tesla M2050
Nvidia Tesla M2050 GPU cards:

I Based on Fermi architecture
I 14 SMPs× 32 cores/SMP = 448 cores

(each running at 1.55 GHz)
I 215 × 32-bit registers/SMP
I Configurable: 64 KB shared

memory / L1 cache
I 3 GB GDDR5 of Local RAM

price: 1,299.00 USD

Our experiments used a host PC with:
I Intel Xeon E5620 quad core (2.4 GHz)
I 2× 4 GB of DDR3-1333 RAM
I 2×Tesla M2050 GPU cards

11 / 21



Part III: Implementation



CUDA modular multiplication (1/2)

I Iteration function for Pollard rho:

f (x) =


g x if 0 ≤ x < q

3

x2 if q
3 ≤ x < 2q

3

h x if 2q
3 ≤ x < q

I Need fast, multiprecision modular multiplication to
solve DLs in Z ∗

N

I We used Koç et al’s CIOS algorithm for Montgomery
multiplication

I Low auxiliary storage =⇒ lots of threads

I We do one thread per multiplication

12 / 21



CUDA modular multiplication (2/2)

Table: k -bit modular multiplications per second and (amortized)
time per k -bit modular multiplication on a single Tesla M2050.

Bit length Time per trial Amortized time Modmults
of modulus ± std dev per modmult per second

192 30.538 s± 4 ms 1.19 ns ≈840,336,000
256 50.916 s± 5 ms 1.98 ns ≈505,050,000
512 186.969 s± 4 ms 7.30 ns ≈136,986,000
768 492.6 s± 200 ms 19.24 ns ≈ 51,975,000

1024 2304.5 s± 300 ms 90.02 ns ≈ 11,108,000

I Larger k =⇒ each multiplication takes longer
=⇒ can compute fewer multiplications in parallel

13 / 21



CUDA Pollard rho (1/2)

Goal
Compute discrete logarithms modulo kN -bit RSA numbers
N = pq with 2kB -smooth totient.

Our implementation:
I Optimized for kN = 1536 and kB ≈ 55
I Assumes that the factorization of p − 1 and q − 1 is known
I Uses Pohlig-Hellman approach to decompose problem to

kB-bit subproblems
I Distinguished points: at least 10 trailing zeros in binary

(Montgomery) representation

14 / 21



CUDA Pollard rho (2/2)

 10

 100

 1000

2
50

2
52

2
54

2
56

2
58

C
o
m

p
u
te

 t
im

e 
(s

)

B (smoothness of totient)

Time to compute discrete logarithm

5.78E-5 B
0.38

I Expected cost per B-smooth DL is in Θ(
√

B)

I Each card solves 768
lg B such DLs =⇒ runtime in Θ(

√
B/ lg B)

I B ≈ 254 =⇒ runtime roughly proportional to B0.39

15 / 21



Part IV: Implications



Implications

What are the implications for existing DL-based
cryptosystems?
In most cases, there are no real implications.

So why am I speaking at SHARCS?

I Cost estimates for cryptographically interesting
computations are useful

I Construct trapdoor discrete logarithm groups

I Potential attacks on some zero-knowledge proofs

I Menezes: duplicate signature key selection (DSKS)
attacks on RSA

16 / 21



Implications

What are the implications for existing DL-based
cryptosystems?
In most cases, there are no real implications.

So why am I speaking at SHARCS?

I Cost estimates for cryptographically interesting
computations are useful

I Construct trapdoor discrete logarithm groups

I Potential attacks on some zero-knowledge proofs

I Menezes: duplicate signature key selection (DSKS)
attacks on RSA

16 / 21



Attack on zero-knowledge “range proofs”

Problem
For a fixed generator g ∈ G and commitment C = gx , prove (in
zero-knowledge, with knowledge of x) that a ≤ x ≤ b.

Lagrange’s four square theorem: An integer x ∈ Z is
nonnegative if and only if it can be expressed as the sum of (at
most) four integer squares.

I Idea: Compute Ca = C/ga = gx−a and Cb = gb/C = gb−x ,
then prove that Ca and Cb each commit to a sum of four
squares.

I Soundness relies on order of G being hidden, which it
usually is not!

I Move proof into Z∗
N for RSA number N = pq (whose

factorization is kept secret from the prover)

17 / 21



Attack on zero-knowledge “range proofs”

Problem
For a fixed generator g ∈ G and commitment C = gx , prove (in
zero-knowledge, with knowledge of x) that a ≤ x ≤ b.

Lagrange’s four square theorem: An integer x ∈ Z is
nonnegative if and only if it can be expressed as the sum of (at
most) four integer squares.

I Idea: Compute Ca = C/ga = gx−a and Cb = gb/C = gb−x ,
then prove that Ca and Cb each commit to a sum of four
squares.

I Soundness relies on order of G being hidden, which it
usually is not!

I Move proof into Z∗
N for RSA number N = pq (whose

factorization is kept secret from the prover)

17 / 21



Attack on zero-knowledge “range proofs”

Problem
For a fixed generator g ∈ G and commitment C = gx , prove (in
zero-knowledge, with knowledge of x) that a ≤ x ≤ b.

Lagrange’s four square theorem: An integer x ∈ Z is
nonnegative if and only if it can be expressed as the sum of (at
most) four integer squares.

I Idea: Compute Ca = C/ga = gx−a and Cb = gb/C = gb−x ,
then prove that Ca and Cb each commit to a sum of four
squares.

I Soundness relies on order of G being hidden, which it
usually is not!

I Move proof into Z∗
N for RSA number N = pq (whose

factorization is kept secret from the prover)

17 / 21



Attack on zero-knowledge “range proofs”

Problem
For a fixed generator g ∈ G and commitment C = gx , prove (in
zero-knowledge, with knowledge of x) that a ≤ x ≤ b.

Lagrange’s four square theorem: An integer x ∈ Z is
nonnegative if and only if it can be expressed as the sum of (at
most) four integer squares.

I Idea: Compute Ca = C/ga = gx−a and Cb = gb/C = gb−x ,
then prove that Ca and Cb each commit to a sum of four
squares.

I Soundness relies on order of G being hidden, which it
usually is not!

I Move proof into Z∗
N for RSA number N = pq (whose

factorization is kept secret from the prover)

17 / 21



Trapdoor discrete logarithm groups (1/3)
Idea
Work modulo an RSA modulus N = pq such that p − 1 and
q − 1 are B-smooth.

I Public key: N
I Private key: p,q and the factorization of p − 1 and q − 1

Trapdoor DL cost

I With trapdoor key: DL computation takes Θ
(

lg N
lg B

√
B
)

highly parallelizable work
I Let µ1 be the number of (lg N/2)-bit modular multiplications

computable per core-second, then trapdoor DL runtime is

≈ lg N
lg B

· c ·
√

B
Ψ · µ1

seconds,

for some constant c.

18 / 21



Trapdoor discrete logarithm groups (1/3)
Idea
Work modulo an RSA modulus N = pq such that p − 1 and
q − 1 are B-smooth.

I Public key: N
I Private key: p,q and the factorization of p − 1 and q − 1

Trapdoor DL cost

I With trapdoor key: DL computation takes Θ
(

lg N
lg B

√
B
)

highly parallelizable work
I Let µ1 be the number of (lg N/2)-bit modular multiplications

computable per core-second, then trapdoor DL runtime is

≈ lg N
lg B

· c ·
√

B
Ψ · µ1

seconds,

for some constant c.

18 / 21



Trapdoor discrete logarithm groups (2/3)
Idea
Work modulo an RSA modulus N = pq such that p − 1 and
q − 1 are B-smooth.

I Public key: N
I Private key: p,q and the factorization of p − 1 and q − 1

Non-trapdoor DL cost (1/2)
I Without trapdoor key: Best approach seems to be

factoring to recover private key!
I Pollard’s p − 1 algorithm: Factors B-smooth numbers

with O(B) work
I p − 1 attack is inherently serial! Parallelism won’t help

much!

19 / 21



Trapdoor discrete logarithm groups (2/3)
Idea
Work modulo an RSA modulus N = pq such that p − 1 and
q − 1 are B-smooth.

I Public key: N
I Private key: p,q and the factorization of p − 1 and q − 1

Non-trapdoor DL cost (2/2)
I ECM, QS, et al.: highly parallelizable and subexponential

cost, but cost scales with lg N instead of B
I For 1536-bit RSA moduli, cross over point occurs when

Ψ · B ≈ 285

I Need Ψ� 230 cores to do faster non-trapdoor DL with
other algorithms

19 / 21



Trapdoor discrete logarithm groups (3/3)
Idea
Work modulo an RSA modulus N = pq such that p − 1 and
q − 1 are B-smooth.

I Public key: N
I Private key: p,q and the factorization of p − 1 and q − 1

Practical security analysis

B ≈ 255 =⇒

{
> 1700 years for non-trapdoor DL
< 2 minutes for trapdoor DL

I These are wall-clock times!

20 / 21



Part V: Conclusion



Summary

I Used CUDA to solve DLs in smooth-order groups

I Up to about 258-smooth 1536-bit RSA numbers in under 5
minutes on 2× Tesla M2050

I > 100 million 768-bit modular multiplications per second

I > 1.7 billion 192-bit modular multiplications per second

I Extrapolating: 280-smooth DL should be feasible in ≈ 23
hours on same Tesla cards (with a bit more system RAM)

I Constructed and analyzed trapdoor discrete logarithm
groups

I Proposed simple attack on (naively implementations of)
Boudot’s zero-knowledge range proofs

21 / 21



All of our code is free and open source:

http://crysp.uwaterloo.ca/software/

http://crysp.uwaterloo.ca/software/

	Title slide
	Deconstructing the title
	Pollard's rho
	GPUs and CUDA
	Implementation
	Implications
	Conclusion

