Cryptol: The Language of Cryptography
Cryptanalysis

Joe Hurd & Sally A Browning | SHARCS | March 2012

Cryptol:

The language of cryptography

¢ Declarative specification language

* Language tailored to the crypto domain
* Designed with feedback from NSA

é Execution and validation tools

* Tool suite for different implementation and "
verification applications .
* In use by crypto-implementers E A
—
R A
W Crypiol:

The Language of Cryptography

ATiona
=
Cryptol: ‘

The Language of Cryptography

[H
EiF

Applying Cryptol to cryptanalysis

¢ Thesis: Cryptol also serves as a domain-specific
language for cryptanalysis.

* The same language constructs are useful for both
cryptography and cryptanalysis.

* The back-ends support efficient cryptanalysis on a
variety of hardware/software platforms.

* The verification toolset can be used to probe a
cryptographic algorithm for weaknesses.

é This talk will cover these topics and show their use
in a cryptanalysis demo using Cryptol.

L 3 © 2012 Galois, Inc. All rights reserved.)

THE LANGUAGE

A Taste of Cryptol

L 4 © 2012 Galois, Inc. All rights reserved.)

Cryptol programs

¢ File of mathematical definitions
* Has a clean, unambiguous semantics
* Strong static bit-precise typing
¢ Definitions are computationally neutral

* Cryptol tools provide the computational content (interpreters,
compilers, code generators, verifiers)

x : [4]1[32];
x =[23 13 1 0];

F: ([16],[16]) -> [16];
F CX,Y) =2 * X + Y5

L 5 © 2012 Galois, Inc. All rights reserved.)

| galois |

Cryptol: Specify interfaces unambiguously

From the Advanced Encryption Standard definition?

3.1 Inputs and Outputs

The input and output for the AES algorithm each consist of sequences of 128 bits (digits with
values of 0 or 1). These sequences will sometimes be referred to as blocks and the number of
bits they contain will be referred to as their length. The Cipher Key for the AES algorithm 1s a
sequence of 128, 192 or 256 bits. Other input. output and Cipher Key lengths are not permitted
by this standard.

©
g blockEncrypt : {k} (k >= 2, 4 >= k) => ([128], [64*k]) -> [128]
o
For all x ..between First input is a Second input Output is a
2 and 4 sequence of is a sequence sequence
128 bits of 128, 192, of 128 bits
or 256 bits

Thttp://csrc.nist.gov/publications/fips/fipsl97/fips—197.pdf
6 © 2012 Galois, Inc. All rights reserved.

J

Cryptol: Natural expression of

stream equations

as
new

as

[Ox3F OxE2 Ox65 OxCA] # new;

[aAb AC a <- das

a8
il

b <- drop(1,as)
c <- drop(3,as) I|];

new

© 2012 Galois, Inc. All rights reserved.)

| galois |

Cryptol: Expressing dataflow dependencies

Round 1 Round 2 Round n
oo IR
& A
S CErs pres ... prs

encrypt128 : ([41[32],[41[4]1[8]1) -> [4]1[4]1[8];
encryptl128 (initialKey, plainText) = cipherText where {
roundKeys = [initialKey] # [| nextKey (round, prev)
|| round <- [1..10]
|| prev <- roundKeys
11;
initialState = first(roundKeys) A plainText;
rounds = [initialState] # [| nextState (prev, roundKey, round)
|| round <- [1..10]
|| prev <- rounds
| | roundKey <- drop (1, roundKeys)
11;

cipherText = last(rounds);

Cryptol

+s

L © 2012 Galois, Inc. All rights reserved.)

One specification - Many uses

wO=u-I"I mod p + u-I*'wl mod p
s=f* (w0 +pw2) mod q

Domain-specific / Assured
design capture / implementation iﬁ

Formal models Vori ,
and test cases) erify cryp ,0
implementations

Validate

Cryptol Hardware
Workbench implementation

Software @

implementation Special purpose

\/(- processor

© 2012 Galois, Inc. All rights reserved.)

CRYPTOL APPLICATIONS

Cryptol at Work

L 10 © 2012 Galois, Inc. All rights reserved.)

| galois | . . .
Cryptol invites high-level exploration

of the design space

¢ Explore the implementation design space at a very
high level

¢ Experiment with several radically different designs
in Cryptol in the course of a few hours, covering
ground that would take weeks by traditional
methods

é Each design can be modeled and characterized
quickly

© 2012 Galois, Inc. All rights reserved.)

12

GENERAL DYNAMICS
C4 Systems

ALGORITHM DEVELOPMENT
AlIM: Advanced INFOSEC Machine

“...an experienced Cryptol programmer, given a new crypto program
specification and a soft copy of test vectors, can be expected to learn the
algorithm and have a fully functional and verified Cryptol model in a few
days to a week.”

Alan Newman, GD C4 Systems

© 2012 Galois, Inc. All rights reserved.)

What to do?

é You get a specification for an
encryption algorithm. It's a
mixture of English, pseudo- RN

Announcing the

COd e y d i a g ra m S y a n d te St ADVANCED ENCRYPTION STANDARD (AES)

Federal 1 i dards Publications (FIPS PUBS) are issued by the National
Institute of Sundan‘]s and chhnology (V]ST) aﬁcr appm\a] by the Secretary of Commerce

L]
' pursuant to Section 5131 of the Reform Act of 1996
’ = (Public Law 104-106) and the Computer Secunt) Act of 1987 (Public Law 100-235).

1. Name of Standard. Advanced Encryption Standard (AES) (FIPS PUB 197).
2. Category of Standard. Computer Security Standard, Cryptography.

L]
3 Explanation. The Advanced Encryption Standard (AES) specifies a FIPS-approved
cryptographic algorithm that can be used to protect clectronic data. The AES algorithm is a
symmetric block cipher that can encrypt (encipher) and decrypt (decipher) information.

Encryption converts data to an unintelligible form called ciphertext; decrypting the ciphertext
converts the data back into its original form, called plaintext.

[} [} L]
The AES algorithm is capable of using cryptographic keys of 128, 192, and 256 bits to encrypt
algorithm into a piece o B
4. Approving Authority. Secretary of Commerce.

5. Mai Agency. D of C National Institute of Standards and
Technol ion Technology Lab y (ITL).

n
6. Applicability. This standard may be used by Federal departments and agencies when an
agency determines that sensitive (unclassified) information (as defined in P. L. 100-235) requires
, cryptographic protection.

Orher FIPS-app d er hic algorithms may be used in addition to, oxmlu:u of 1h|s
standard. Federal agencics or d that use cr hic devi ICCS for

than your competition e e R

¢ You want to sell the hardware
to the government

organizations.

© 2012 Galois, Inc. All rights reserved.)

-

-
- o

Handwritten
implementation
(Cryptol comments

reference
specification

Cryptol
interpreter

- Galois tools

- FPGA Vendor tools B Data files produced by Cryptol tools
—» Input to tool C| Data files produced by vendor tools
- -» Feedback to designer - Implmentation

Specification

14

The specification is translated into a
fully executable, unambiguous
notation

Cryptol fragments annotate the AIM
micro sequencer code, greatly
increasing the readability of the
extremely dense assembly language

Component testing, from small
snippets through major subroutines, is
greatly facilitated with Cryptol-
generated test vectors derived from
the end-to-end test vectors provided in
algorithm source specifications

The Cryptol models directly support
the certification effort

© 2012 Galois, Inc. All rights reserved.

J

15

ok Gilins

A High Speed Encryptor

A RESEARCH EXPERIMENT

“...the Rockwell Collins/Galois team was able to design, implement,

simulate, integrate, analyze, and test a complex CEA on the new hardware,
including AES-256 and Galois Counter Mode (GCM), in less than 3
months.”

© 2012 Galois, Inc. All rights reserved.

J

What to do?

¢ You want to quickly and cheaply build a research
prototype to strengthen your proposal to participate
IN a research program

¢ You need some encryption in the FPGA prototype,
but you aren’t sure how fast it needs to be or how
much space will be available

¢ You want to simulate the complete system before
you build it to nail down the requirements for the
crypto

© 2012 Galois, Inc. All rights reserved.)

AES reference
specification
(Cryptol)

Symbolic
simulator

Reference
Make high-level model

target-specific
refinements. Verify

Equivalence
evidence

Key

- Galois tools

- Third party tools

B Data files

- Evaluation/Certification evidence

—» Input to tool

17- -p» Feedback to designer

Symbolic
simulator

Equivalence
check

Equivalence
evidence

—————— SOl Fxperiment with system
integration and control
logic.

Cryptol
compiler
VHDL

Calibrate time/space trade-offs and
connectivity issues. Verify equivalence
with target specification.

Place and
Synthesis route

Netlist
model

-~
= —

Netlist
model

Bitfile

Equivalence
check

Equivalence
evidence

© 2012 Galois, Inc. All r%ghts reserved.)

Experimental results

é High-level exploration of the design space yields huge benefits

* A Cryptol developer can experiment with multiple designs in a short
amount of time

* Detailed implementation refinements can be effectively modeled in the
high-level specification

= A heavily pipelined AES written in Cryptol outperforms commercial cores
é System integration issues are important
* In HSE, space considerations were more important than performance

AES Resource Utilization Performance
Optimization LUTs FF Block RAM Latency Clockrate (MHz) Throughput (Gbps)
Small size 1124 461 10 12 144 1.67
High

6336 12576 100 53 385 47.4
performance

L 18 © 2012 Galois, Inc. All rights reserved.)

ALGORITHM EVALUATION

SHA-3 Candidates

L 19 © 2012 Galois, Inc. All rights reserved.)

What to do?

é You are developing a tool to build models in the

form of AIG graphs for crypto circuits described in
VHDL

é None of your colleagues design crypto circuits in
VHDL

é You need to find a source for VHDL designs for
crypto algorithms

© 2012 Galois, Inc. All rights reserved.)

The SHA-3 competition

é ‘NIST has opened a public competition to develop
a new cryptographic hash algorithm, which
converts a variable length message into a short
“message digest” that can be used for digital
signatures, message authentication and other
applications.”

é 51 original submissions
é 5 finalists

© 2012 Galois, Inc. All rights reserved.)

The SHA-3 finalists

¢ Cryptol specifications are available for all 5 finalists

¢ Galois wrote specs for three of the finalists
* Skein
= We have verified two third-party VHDL implementation

* Blake

= Verification of a third-party VHDL implementation is described in a
downloadable tutorial

- JH

¢ Two students at U.Minho in Portugal wrote a Cryptol
specification for Grgstl

* They also generated a respectable FGPA implementation
and verified it against the Cryptol specification

é A client provided us with a Cryptol spec for Keccak

L 22 © 2012 Galois, Inc. All rights reserved.)

23

Cryptol in the evaluation process

Cryptol A crypto-device evaluator:

implementation

specification é Creates a reference specification and
Netiist associated formal model

handwritten
VHDL
implementation

é Checks the equivalence of the
implementation models with the
specification models

"1 Netlist

Equivalence

Equivalence checker

checker

The process works for both hand-written
and Cryptol-generated designs

Cryptol
reference
specification

© 2012 Galois, Inc. All rights reserved.

J

The verification process

1. Develop a specification

2. Understand the implementation
3. Import the VHDL into Cryptol

4. Match up the inputs and outputs
5

. Create AIG representations of both circuits and
reduce one to the other

© 2012 Galois, Inc. All rights reserved.)

| galois |

Verifying two implementations of Skein

é Partial implementation by Men Long in VHDL

* Bug found! Men Long’s concise cyclic rotation was
interpreted differently by GHDL, Simili and Xilinx.

* Resolution: Replaced by call to standard library function.

é Full implementation by Stefan Tillich
* http://www.iaik.tugraz.at/content/research/

Cryptol spec | VHDL implementation | Verification
AlG AlG time

Men Long 118,156 nodes 653,963 nodes ~1 hr
Stefan Tillich 301,342 nodes 900,496 nodes ~17.5 hrs

L 25 © 2012 Galois, Inc. All rights reserved.)

CRYPTOL USE CASE

Finding van de Waerden
numbers

What to do?

é You think you found a van der Waerden number

* For all positive integers r and k there exists a positive integer N
such that if the integers {1 2 ... N} are colored, each with one of r
different colors, then there are at least k integers in arithmetic
progression all of the same color. For any r and k, the smallest such
N is the van der Waerden number W(r,k).

¢ Van de Waerden numbers are difficult to compute;
the last discovery was more than 30 years ago.”
How can you be sure you found one?

*W(2,5)=178. In 2007, Dr. Michal Kouril of the University of Cincinnati established
that W(2,6)=1132

L 27 © 2012 Galois, Inc. All rights reserved.)

| galois |

Gaining confidence in an implementation

¢ Kouril employed a special SAT-solver and clever
techniques to bound the search and programmed FPGAs
to speed up the search.

é To convince himself that the FPGA ensemble was doing
what he expected, he:

* Wrote a Cryptol specification for the algorithm running in the FPGA
ensemble

* Generated formal models for both the Cryptol specification and his
VHDL implementation

* Verified that the two were equivalent

Searching a large key space might employ similar techniques

28 © 2012 Galois, Inc. All rights reserved.)

VERIFICATION TECHNIQUES

Theorem-Driven Analysis

L 29 © 2012 Galois, Inc. All rights reserved.)

| galois |

30

Verification using formal methods

¢ Formal Methods is a body of verification techniques that work by
building a mathematical model of an artifact and proving properties
about it

é Formal methods are complementary to testing

Testing techniques generate weak evidence about the real artifact
[Worry: Have | tested enough?]

Formal methods generate strong evidence about a model of the artifact
[Worry: Is the model faithful enough?]

Early Reference:

Alan M. Turing. Checking a large routine. In Report of a Conference on
High Speed Automatic Calculating Machines, pages 67—69, Cambridge,

England, June 1949. University Mathematical Laboratory.

© 2012 Galois, Inc. All rights reserved.

J

Equivalence checking

¢ Given two Cryptol functions f, g

* Either prove they agree on all inputs:
= Vx. fx==gx
* Or, provide a counter example x such that
= fxl=gx
é Typical use-case:
* f. Specification, written for clarity

* g: Implementation, optimized for speed/space on the
target platform

L 31 © 2012 Galois, Inc. All rights reserved.)

| galois |

Simple equivalence checking example

f, g
.F
g
h

X X X
Il

h : [64] -> [64];

2¥X;
X << 1;
X <<< 1;

Cryptol> :eq f ¢
True

Cryptol> :eq f h
False
f Oxffffffffrffffrfffes
= Oxfffffrfffrfffffe
h Oxffffffrfffrfffff
= Oxfffffffffrrffffff

32

© 2012 Galois, Inc. All rights reserve,

Property verification

¢ Equivalence checking shows functional equivalence
* The input/output behaviors are “precisely the same”

é Property verification goes further

* Allows “correctness” properties to be specified and proved
automatically

¢ Counter-examples are extremely useful for debugging

* or deriving concrete exploits

é Example: For all values of key and plaintext, encryption
followed by the decryption returns the plaintext:

theorem encDec: {key pt}.
dec (key, enc(key, pt)) == pt;

L 33 © 2012 Galois, Inc. All rights reserved.)

Theorem declarations

é To prove a sort function correct, we need to show:
1. Output is in non-decreasing order

2. Output is a permutation of the input
¢ Define these conditions as “predicates” in Cryptol

* Predicates are just functions returning true/false

¢ Write a “theorem declaration” that captures correctness:

theorem sortIsCorrect: {xs}.
nonDecreasing(ys) & isPermutationOf (xs, ys)

where ys = sort(xs);

34 © 2012 Galois, Inc. All rights rese

rved.

J

Proving theorem declarations

¢ “Quickcheck” property-based testing

* User gives a property, Cryptol automatically tests it on random
Inputs.

¢ Use of SMT-based property checkers

* SAT: Checks for satisfiability of large Boolean formulas

 SMT extends SAT with higher-level constraint solvers (linear
arithmetic, arrays, functions, etc.)

é Semi-automatic theorem proving
* Translator from Cryptol to Isabelle theorem prover

* User can specify arbitrary Cryptol properties, but proof may need
human guidance

35 © 2012 Galois, Inc. All rights rese

rved.

| galois |

AlG forms a common interchange

Validate

Symbolic
interpretation

Import
external

ABC

JVM
expansion

LLVM
expansion

36 © 2012 Galois, Inc. All rights reserved.

J

37

CRYPTOL FOR CRYPTANALYSIS

Demo

© 2012 Galois, Inc. All rights reserved.)

ZUC stream cipher

¢ Initiative by 3GPP for securing mobile networks

¢ Word-oriented stream cipher
* 128-bit key, 128-bit initialization vector
* Generates keystream of 32-bit words

é Forms the heart of two 3GPP crypto algorithms:

* The 128-EEAS3 confidentiality algorithm
* The 128-EIA3 integrity algorithm

é A severe vulnerability was discovered in ZUC version 1.4

e “ZUC initialization process does not preserve key entropy”
* Led to a chosen IV attack [Wu et. al., ASIACRYPT2010]

38 © 2012 Galois, Inc. All rights reserved.)

ZUC design

| <K< 16

~ wn T

<~ ™

All rights reserved.)

Summary

é Cryptol is the language of cryptanalysis.

¢ Cryptol language constructs are useful for
expressing cryptanalysis algorithms.

¢ Different back-ends support efficient cryptanalysis
on a variety of hardware/software platforms.

é The verification toolset can be used to probe
cryptographic algorithms for weaknesses.

© 2012 Galois, Inc. All rights reserved.)

Questions?

é For more information on .
Cryptol visit

http.//www.cryptol.net

é Free download of the
interpreter with QuickCheck

é Also comes with language
manuals and toolset tutorials

é Evaluation license available
for FPGA back-end and
verification tools

SUPPORTING MATERIAL

Backup Slides

L 42 © 2012 Galois, Inc. All rights reserved.)

About Galois, Inc.

> high assurance

research and development

» creating trustworthiness in

critical systems

Galois [gal-wah]

I\]amed after French mathematician
Evariste Galois

L 43 © 2012 Galois, Inc. All rights reserved.)

Company facts

+~Focus-on:
« Formal methods
« Language design
- Systems engineering

sassainPortland, Oregon

© 2012 Galois, Inc. All rights reserved.

