
© 2012 Galois, Inc. All rights reserved. 1

Cryptol: The Language of Cryptography
Cryptanalysis

Joe Hurd & Sally A Browning | SHARCS | March 2012

The Cryptol team, past and present:
Sally Browning, Ledah Casburn, Iavor Diatchki, Trevor Elliot,
Levent Erkok, Sigbjorn Finne, Adam Foltzer, Andy Gill, Fergus
Henderson, Joe Hendrix, Joe Hurd, John Launchbury, Jeff Lewis,
Lee Pike, John Matthews, Thomas Nordin, Mark Shields, Joel
Stanley, Frank Seaton Taylor, Jim Teisher, Aaron Tomb, Philip
Weaver, Adam Wick, Edward Yang

© 2012 Galois, Inc. All rights reserved. 2

Cryptol:
The language of cryptography

 Declarative specification language
•  Language tailored to the crypto domain
•  Designed with feedback from NSA

 Execution and validation tools
•  Tool suite for different implementation and

verification applications
•  In use by crypto-implementers

© 2012 Galois, Inc. All rights reserved. 3

Applying Cryptol to cryptanalysis

 Thesis: Cryptol also serves as a domain-specific
language for cryptanalysis.

•  The same language constructs are useful for both
cryptography and cryptanalysis.

•  The back-ends support efficient cryptanalysis on a
variety of hardware/software platforms.

•  The verification toolset can be used to probe a
cryptographic algorithm for weaknesses.

 This talk will cover these topics and show their use
in a cryptanalysis demo using Cryptol.

© 2012 Galois, Inc. All rights reserved. 4

A Taste of Cryptol
THE LANGUAGE

© 2012 Galois, Inc. All rights reserved. 5

Cryptol programs

  File of mathematical definitions
•  Has a clean, unambiguous semantics
•  Strong static bit-precise typing

  Definitions are computationally neutral
•  Cryptol tools provide the computational content (interpreters,

compilers, code generators, verifiers)

x : [4][32];	
x = [23 13 1 0];	

F : ([16],[16]) -> [16];	
F (x,y) = 2 * x + y;	

© 2012 Galois, Inc. All rights reserved. 6

blockEncrypt : {k} (k >= 2, 4 >= k) => ([128], [64*k]) -> [128]

Cr
yp

to
l

Cryptol: Specify interfaces unambiguously

For all k …between
2 and 4

First input is a
sequence of

128 bits

Second input
is a sequence
of 128, 192,
or 256 bits

Output is a
sequence
of 128 bits

From the Advanced Encryption Standard definition†

†http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

© 2012 Galois, Inc. All rights reserved. 7

Cryptol: Natural expression of
stream equations

as = [Ox3F OxE2 Ox65 OxCA] # new;	
new = [| a ^ b ^ c || a <- as	
 || b <- drop(1,as)	
 || c <- drop(3,as) |];	

3F as E2

^

65 CA

^

new

as

© 2012 Galois, Inc. All rights reserved. 8

Cryptol: Expressing dataflow dependencies

encrypt128 : ([4][32],[4][4][8]) -> [4][4][8]; 	
encrypt128 (initialKey, plainText) = cipherText where { 	
 roundKeys = [initialKey] # [| nextKey (round, prev) 	
 roundKeys = [initialKey] # || round <- [1..10] 	
 roundKeys = [initialKey] # || prev <- roundKeys 	
 roundKeys = [initialKey] # |]; 	
 initialState = first(roundKeys) ^ plainText; 	
 rounds = [initialState] # [| nextState (prev, roundKey, round) 	
 rounds = [initialState] # || round <- [1..10] 	
 rounds = [initialState] # || prev <- rounds 	
 rounds = [initialState] # || roundKey <- drop (1, roundKeys) 	
 rounds = [initialState] # |]; 	
 cipherText = last(rounds); 	
};

Cr
yp

to
l

© 2012 Galois, Inc. All rights reserved. 9

One specification - Many uses

Design

Validate

Build

Domain-specific
design capture

w0=u-I*I mod p + u-I*wl mod p
s=f * (w0 +pw2) mod q Assured

implementation

Verify crypto
implementations

Formal models
and test cases

Special purpose
processor

Software
implementation

Hardware
implementation

Cryptol
Workbench Cryptol

FPGA

© 2012 Galois, Inc. All rights reserved. 10

Cryptol at Work
CRYPTOL APPLICATIONS

© 2012 Galois, Inc. All rights reserved. 11

Cryptol invites high-level exploration
of the design space

 Explore the implementation design space at a very
high level

 Experiment with several radically different designs
in Cryptol in the course of a few hours, covering
ground that would take weeks by traditional
methods

 Each design can be modeled and characterized
quickly

© 2012 Galois, Inc. All rights reserved. 12

AIM: Advanced INFOSEC Machine
ALGORITHM DEVELOPMENT

“...an experienced Cryptol programmer, given a new crypto program
specification and a soft copy of test vectors, can be expected to learn the
algorithm and have a fully functional and verified Cryptol model in a few
days to a week.”!

Alan Newman, GD C4 Systems!

© 2012 Galois, Inc. All rights reserved. 13

What to do?

 You get a specification for an
encryption algorithm. It’s a
mixture of English, pseudo-
code, diagrams, and test
vectors, and voluminous!

 You need to build the
algorithm into a piece of
hardware, and more quickly
than your competition

 You want to sell the hardware
to the government

© 2012 Galois, Inc. All rights reserved. 14

What GD C4 Systems does

  The specification is translated into a
fully executable, unambiguous
notation

  Cryptol fragments annotate the AIM
micro sequencer code, greatly
increasing the readability of the
extremely dense assembly language

  Component testing, from small
snippets through major subroutines, is
greatly facilitated with Cryptol-
generated test vectors derived from
the end-to-end test vectors provided in
algorithm source specifications

  The Cryptol models directly support
the certification effort

Cryptol
interpreter

Cryptol
reference

specification

Handwritten
implementation

(Cryptol comments)

Simulator

NIST

Test
vectors

Test
vectors

FPGA Vendor tools

Galois tools

Data files produced by Cryptol tools

Data files produced by vendor tools Input to tool

Feedback to designer

Specification

Implmentation

© 2012 Galois, Inc. All rights reserved. 15

A High Speed Encryptor
A RESEARCH EXPERIMENT

“…the Rockwell Collins/Galois team was able to design, implement,
simulate, integrate, analyze, and test a complex CEA on the new hardware,
including AES-256 and Galois Counter Mode (GCM), in less than 3
months.”!

© 2012 Galois, Inc. All rights reserved. 16

What to do?

 You want to quickly and cheaply build a research
prototype to strengthen your proposal to participate
in a research program

 You need some encryption in the FPGA prototype,
but you aren’t sure how fast it needs to be or how
much space will be available

 You want to simulate the complete system before
you build it to nail down the requirements for the
crypto

© 2012 Galois, Inc. All rights reserved. 17

AES reference
specification

(Cryptol)

Key

Third party tools

Galois tools

Data files

Evaluation/Certification evidence

Input to tool

Feedback to designer

Cryptol
compiler

C

Simulator Experiment with system
integration and control
logic.!

Equivalence
check

Equivalence
evidence

Crypto
Developer

Target
specification

 Symbolic
simulator

Symbolic
simulator

Reference
model

Target
model

Make high-level
target-specific

refinements. Verify
equivalence with

reference specification.!

Producing a family of designs

Equivalence
check

Equivalence
evidence

Equivalence
check

Equivalence
evidence

Place and
route

Bitfile Netlist
model

Synthesis

Netlist
model

Calibrate time/space trade-offs and
connectivity issues. Verify equivalence
with target specification.!

VHDL

© 2012 Galois, Inc. All rights reserved. 18

Experimental results

  High-level exploration of the design space yields huge benefits
•  A Cryptol developer can experiment with multiple designs in a short

amount of time
•  Detailed implementation refinements can be effectively modeled in the

high-level specification
  A heavily pipelined AES written in Cryptol outperforms commercial cores

  System integration issues are important
•  In HSE, space considerations were more important than performance

AES Resource Utilization Performance
Optimization LUTs FF Block RAM Latency Clockrate (MHz) Throughput (Gbps)

Small size 1124 461 10 12 144 1.67

High
performance 6336 12576 100 53 385 47.4

© 2012 Galois, Inc. All rights reserved. 19

SHA-3 Candidates
ALGORITHM EVALUATION

© 2012 Galois, Inc. All rights reserved. 20

What to do?

 You are developing a tool to build models in the
form of AIG graphs for crypto circuits described in
VHDL

 None of your colleagues design crypto circuits in
VHDL

 You need to find a source for VHDL designs for
crypto algorithms

© 2012 Galois, Inc. All rights reserved. 21

The SHA-3 competition

  “NIST has opened a public competition to develop
a new cryptographic hash algorithm, which
converts a variable length message into a short
“message digest” that can be used for digital
signatures, message authentication and other
applications.”

 51 original submissions
 5 finalists

© 2012 Galois, Inc. All rights reserved. 22

The SHA-3 finalists

 Cryptol specifications are available for all 5 finalists
 Galois wrote specs for three of the finalists

•  Skein
  We have verified two third-party VHDL implementation

•  Blake
  Verification of a third-party VHDL implementation is described in a

downloadable tutorial
•  JH

  Two students at U.Minho in Portugal wrote a Cryptol
specification for Grøstl
•  They also generated a respectable FGPA implementation

and verified it against the Cryptol specification
  A client provided us with a Cryptol spec for Keccak

© 2012 Galois, Inc. All rights reserved. 23

Cryptol
reference

specification

Cryptol
implementation

specification

VHDL
handwritten

VHDL
implementation

Netlist

Netlist

Cryptol in the evaluation process

A crypto-device evaluator:
  Creates a reference specification and

associated formal model
  Checks the equivalence of the

implementation models with the
specification models

 Equivalence
checker Equivalence

checker

The process works for both hand-written
and Cryptol-generated designs

© 2012 Galois, Inc. All rights reserved. 24

The verification process

1.  Develop a specification
2.  Understand the implementation
3.  Import the VHDL into Cryptol
4.  Match up the inputs and outputs
5.  Create AIG representations of both circuits and

reduce one to the other

© 2012 Galois, Inc. All rights reserved. 25

Verifying two implementations of Skein

 Partial implementation by Men Long in VHDL
•  Bug found! Men Long’s concise cyclic rotation was

interpreted differently by GHDL, Simili and Xilinx.
•  Resolution: Replaced by call to standard library function.

 Full implementation by Stefan Tillich
•  http://www.iaik.tugraz.at/content/research/

Cryptol spec
AIG

VHDL implementation
AIG

Verification
time

Men Long 118,156 nodes 653,963 nodes ~ 1 hr

Stefan Tillich 301,342 nodes 900,496 nodes ~ 17.5 hrs

© 2012 Galois, Inc. All rights reserved. 26

Finding van de Waerden
numbers

CRYPTOL USE CASE

© 2012 Galois, Inc. All rights reserved. 27

What to do?

 You think you found a van der Waerden number
•  For all positive integers r and k there exists a positive integer N

such that if the integers {1 2 ... N} are colored, each with one of r
different colors, then there are at least k integers in arithmetic
progression all of the same color. For any r and k, the smallest such
N is the van der Waerden number W(r,k).

 Van de Waerden numbers are difficult to compute;
the last discovery was more than 30 years ago.*
How can you be sure you found one?

* W(2,5)=178. In 2007, Dr. Michal Kouril of the University of Cincinnati established
that W(2,6)=1132

© 2012 Galois, Inc. All rights reserved. 28

Gaining confidence in an implementation

  Kouril employed a special SAT-solver and clever
techniques to bound the search and programmed FPGAs
to speed up the search.

  To convince himself that the FPGA ensemble was doing
what he expected, he:
•  Wrote a Cryptol specification for the algorithm running in the FPGA

ensemble
•  Generated formal models for both the Cryptol specification and his

VHDL implementation
•  Verified that the two were equivalent

Searching a large key space might employ similar techniques

© 2012 Galois, Inc. All rights reserved. 29

Theorem-Driven Analysis
VERIFICATION TECHNIQUES

© 2012 Galois, Inc. All rights reserved. 30

Verification using formal methods

  Formal Methods is a body of verification techniques that work by
building a mathematical model of an artifact and proving properties
about it

  Formal methods are complementary to testing
•  Testing techniques generate weak evidence about the real artifact

[Worry: Have I tested enough?]

•  Formal methods generate strong evidence about a model of the artifact
[Worry: Is the model faithful enough?]

Early Reference:
Alan M. Turing. Checking a large routine. In Report of a Conference on
High Speed Automatic Calculating Machines, pages 67–69, Cambridge,
England, June 1949. University Mathematical Laboratory.

© 2012 Galois, Inc. All rights reserved. 31

 Equivalence checking

 Given two Cryptol functions f, g
•  Either prove they agree on all inputs:

  ∀x. f x == g x

•  Or, provide a counter example x such that
  f x != g x

 Typical use-case:
•  f: Specification, written for clarity
•  g: Implementation, optimized for speed/space on the

target platform

© 2012 Galois, Inc. All rights reserved. 32

Simple equivalence checking example
f, g, h : [64] -> [64];	
f x = 2*x;	
g x = x << 1;	
h x = x <<< 1;

Cryptol> :eq f g	
True	

Cryptol> :eq f h	
False	
f 0xffffffffffffffff	
	 = 0xfffffffffffffffe	

h 0xffffffffffffffff	
	 = 0xffffffffffffffff	

© 2012 Galois, Inc. All rights reserved. 33

Property verification

  Equivalence checking shows functional equivalence
•  The input/output behaviors are “precisely the same”

  Property verification goes further
•  Allows “correctness” properties to be specified and proved

automatically

  Counter-examples are extremely useful for debugging
•  or deriving concrete exploits

  Example: For all values of key and plaintext, encryption
followed by the decryption returns the plaintext:
 theorem encDec: {key pt}.	
 dec (key, enc(key, pt)) == pt;	

© 2012 Galois, Inc. All rights reserved. 34

Theorem declarations

  To prove a sort function correct, we need to show:
1.  Output is in non-decreasing order

2.  Output is a permutation of the input

  Define these conditions as “predicates” in Cryptol
•  Predicates are just functions returning true/false

  Write a “theorem declaration” that captures correctness:

theorem sortIsCorrect: {xs}.

 nonDecreasing(ys) & isPermutationOf(xs, ys)

 where ys = sort(xs);

© 2012 Galois, Inc. All rights reserved. 35

Proving theorem declarations

  “Quickcheck” property-based testing
•  User gives a property, Cryptol automatically tests it on random

inputs.

  Use of SMT-based property checkers
•  SAT: Checks for satisfiability of large Boolean formulas

•  SMT extends SAT with higher-level constraint solvers (linear
arithmetic, arrays, functions, etc.)

  Semi-automatic theorem proving
•  Translator from Cryptol to Isabelle theorem prover
•  User can specify arbitrary Cryptol properties, but proof may need

human guidance

© 2012 Galois, Inc. All rights reserved. 36

AIG forms a common interchange

Design

Validate

Build

Cryptol

AIG

Plan

Test

Build

Java

Symbolic
interpretation JVM

expansion

ABC

Plan

Test

Build

C

LLVM
expansion

Import
external

© 2012 Galois, Inc. All rights reserved. 37

Demo
CRYPTOL FOR CRYPTANALYSIS

© 2012 Galois, Inc. All rights reserved. 38

ZUC stream cipher

  Initiative by 3GPP for securing mobile networks
  Word-oriented stream cipher

•  128-bit key, 128-bit initialization vector
•  Generates keystream of 32-bit words

  Forms the heart of two 3GPP crypto algorithms:
•  The 128-EEA3 confidentiality algorithm
•  The 128-EIA3 integrity algorithm

  A severe vulnerability was discovered in ZUC version 1.4
•  “ZUC initialization process does not preserve key entropy”

•  Led to a chosen IV attack [Wu et. al., ASIACRYPT2010]

© 2012 Galois, Inc. All rights reserved. 39

ZUC design

© 2012 Galois, Inc. All rights reserved. 40

Summary

 Cryptol is the language of cryptanalysis.

 Cryptol language constructs are useful for
expressing cryptanalysis algorithms.

 Different back-ends support efficient cryptanalysis
on a variety of hardware/software platforms.

 The verification toolset can be used to probe
cryptographic algorithms for weaknesses.

© 2012 Galois, Inc. All rights reserved. 41

Questions?

  For more information on
Cryptol visit

http://www.cryptol.net
  Free download of the

interpreter with QuickCheck
  Also comes with language

manuals and toolset tutorials
  Evaluation license available

for FPGA back-end and
verification tools

© 2012 Galois, Inc. All rights reserved. 42

Backup Slides
SUPPORTING MATERIAL

© 2012 Galois, Inc. All rights reserved. 43

About Galois, Inc.

high assurance

research and development

Creating trustworthiness in
critical systems

Galois [gal-wah]
Named after French mathematician
Évariste Galois

© 2012 Galois, Inc. All rights reserved. 44

Company facts

Founded in 1999
~35 full-time employees

Based in Portland, Oregon

Focus on:
•  Formal methods
•  Language design
•  Systems engineering

