Speeding up GPU-based password cracking SHARCS 2012

Martijn Sprengers^{1,2} Lejla Batina^{2,3}

Sprengers.Martijn@kpmg.nl KPMG IT Advisory¹ Radboud University Nijmegen² K.U. Leuven³

March 17-18, 2012

Who am I?

Professional life

- Ethical hacker
 - KPMG IT Advisory
- Education
 - Master Computer Security at the Kerckhoffs Institute
- Expertise and experience
 - Computer and network security
 - Password cracking
 - Social Engineering

Spare time

Cracking password hashes with GPU's

Goals

- Show how password hashing schemes can be efficiently implemented on GPU's
- Impact on current authentication mechanisms
- Pose relevant questions immediately but save discussions for the end

Outline

- Background information on MD5-crypt and GPU
- Optimizations and speed-ups
- Results and improvements

Cracking password hashes with GPU's

Goals

- Show how password hashing schemes can be efficiently implemented on GPU's
- Impact on current authentication mechanisms
- Pose relevant questions immediately but save discussions for the end

Outline

- Background information on MD5-crypt and GPU
- Optimizations and speed-ups
- Results and improvements

Motivation

Why password hashing schemes?

- Database leakage
 - Disgruntled employee
 - SQL injections
- Accessible storage
 - 'SAM' file (Windows)
 - 'passwd' file (Unix)

Why exhaustive search?

- Humans and randomness ightarrow \otimes
- Humans and memorability ightarrow \odot
- Limited keyspace \rightarrow enables exhaustive search

Motivation

Why password hashing schemes?

- Database leakage
 - Disgruntled employee
 - SQL injections
- Accessible storage
 - 'SAM' file (Windows)
 - 'passwd' file (Unix)

Why exhaustive search?

- Humans and randomness ightarrow \oplus
- Humans and memorability \rightarrow \odot
- Limited keyspace \rightarrow enables exhaustive search

Why exhaustive search?

0	D REGISTRATION	Need Help?
1 WELCOME Begin Registration	FOR YOUR SECURITY To protect your account, please answer your Personal Sec User ID and Password so you can begin to manage your ar	
	Verify Your Information:	
	Create a new Oser ID berow, or Cog Mate your Password easy to ream be different from your User ID and Create you You yoed more than 8 characters. Create you Create you Confirm Password. Confirm Password.	contact: contact: ct case sensitive() (s, *, *, *)(@) (s, *, *)(B) (s, *)(s,
		CONTINUE

Why MD5-crypt?

- Commonly used
 - Default Unix scheme, Cisco routers, RIPE authentication
- · Basis for other hashing schemes and frameworks
 - SHA-crypt, bcrypt, PBKDF2

Why GPU?

- New API's support native arithmetic operations
- Designed for highly parallelized algorithms

Why MD5-crypt?

- Commonly used
 - Default Unix scheme, Cisco routers, RIPE authentication
- · Basis for other hashing schemes and frameworks
 - SHA-crypt, bcrypt, PBKDF2

Why GPU?

- New API's support native arithmetic operations
- Designed for highly parallelized algorithms

Password hashing schemes

Definition

$$PHS: \mathbb{Z}_2^m \times \mathbb{Z}_2^s \to \mathbb{Z}_2^m$$

Properties

- Correct use of salts Prevents from time-memory trade-off attacks
- Slow calculation Key-stretching
- Avoid pipelined implementations Hashing k passwords with the same salt should cost k times more computation time than hashing a single password

Avoid pipelined implementations

```
var salt = "btediz(KD+$$40";
this.setKey = function(key) {
    encryptionKey = key;
    if ( !key )
        encryptionKey = null ;
    else {
        for(var i = 0; i < 100; i++)// loop to improve encryption strength
        encryptionKey = MD5(salt + encryptionKey);
    }
}
```


MD5-crypt

MD5-crypt

MD5-crypt("somesalt", "password") = \$1\$somesalt\$W.KCTbPSiFDGffAGOjcBc.

- Key-stretching
 - 1002 calls to MD5-compression function
 - Concatenates password, salt and intermediate result pseudo randomly

MD5-compression round

CUDA and memory model

Martijn Sprengers, Lejla Batina

March 17-18, 2012

Speeding up GPU-based password cracking

Attacker model

Assumptions

- Attacker model
 - Plaintext password recovery
 - Exhaustive search (ciphertext only)
 - No time-memory trade-off
- Hardware
 - One CUDA enabled GPU: NVIDIA GTX 295
 - 480 thread processors
 - 60 streaming multiprocessors
- Password generation
 - Password length < 16
 - Performance measured in unique password checks per second

Our optimizations

Our optimizations

- Memory \rightarrow Fast shared memory
- Algorithm wise \rightarrow Precompute intermediate results
- Execution configuration \rightarrow Block- and gridsizes
- Maximizing parallelization \rightarrow Password hashing is embarrassingly parallel
- Instructions \rightarrow Modulo arithmetic is expensive
- Control flow \rightarrow Branching is expensive

Algorithm optimizations

- Password length < 16 \rightarrow One call to MD5compress()
- Password length $<< 16 \rightarrow$ Precompute intermediate results

Our optimizations

Our optimizations

- Memory \rightarrow Fast shared memory
- Algorithm wise \rightarrow Precompute intermediate results
- Execution configuration \rightarrow Block- and gridsizes
- Maximizing parallelization \rightarrow Password hashing is embarrassingly parallel
- Instructions \rightarrow Modulo arithmetic is expensive
- Control flow \rightarrow Branching is expensive

Algorithm optimizations

- Password length < 16 ightarrow One call to MD5compress()
- Password length $<<16 \rightarrow$ Precompute intermediate results

Our optimizations

Our optimizations

- Memory \rightarrow Fast shared memory
- Algorithm wise \rightarrow Precompute intermediate results
- Execution configuration \rightarrow Block- and gridsizes
- Maximizing parallelization \rightarrow Password hashing is embarrassingly parallel
- Instructions \rightarrow Modulo arithmetic is expensive
- Control flow \rightarrow Branching is expensive

Algorithm optimizations

- Password length < 16 \rightarrow One call to MD5compress()
- Password length $<<16 \rightarrow$ Precompute intermediate results

Memory optimizations

Constant memory

- Default: variables stored in *local memory*
 - Physically resides in global memory (500 clock cycles latency)
- Cached on chip
- As fast as register access (1 clock cycle latency per warp)

Shared memory

- User managed cache
 - On chip (2 clock cycles latency per warp)
 - Shared by all threads in a block
 - Small (16384 Bytes per multiprocessor)
 - Accessed via 16 banks

Memory and algorithm optimizations

Martijn Sprengers, Lejla Batina

Bank conflicts

Problem

- int shared[THREADS_PER_BLOCK][16];
- int *buffer = shared[threadId];

Martijn Sprengers, Lejla Batina

March 17-18, 2012

Speeding up GPU-based password cracking

15 / 28

Bank conflicts

Solution

- int shared[THREADS_PER_BLOCK][16+1];
- int *buffer = shared[threadId]+1;

Martijn Sprengers, Lejla Batina

March 17-18, 2012

Speeding up GPU-based password cracking

16 / 28

Execution configuration optimizations

Influence on our implementation

Martijn Sprengers, Lejla Batina

March 17-18, 2012

Comparison with CPU implementations

Comparison with other implementations

Work	Cryptographic type	Algorithm	Speed up GPU over CPU
Bernstein et al. [2, 1]	Asymmetric	ECC	4-5
Manavski et al. [5]	Symmetric	AES	5-20
Harrison et al. [3]	Symmetric	AES	4-10
Harrisonet al. [4]	Asymmetric	RSA	4
This work	Hashing	MD5-crypt	25-30

Consequences for password safety

Influence on password classes

Length	26 characters	36 characters	62 characters	94 characters
4	0,5 Seconds	2 Seconds	16 Seconds	2 Minutes
5	13 Seconds	1 Minute	17 Minutes	2 Hours
6	5 Minutes	41 Minutes	18 Hours	10 Days
7	2 Hours	1 Days	46 Days	3 Years
8	2 Days	37 Days	8 Years	264 Years
9	71 Days	4 Years	488 Years	20647 Years
10	5 Years	132 Years	30243 Years	2480775 Years

Conclusions

Should we worry?

- Yes, if your password length is < 9 characters
- Increase entropy in passwords \rightarrow password policy
 - Advantage: old schemes still usable
 - Disadvantage: humans and randomness ightarrow \otimes
 - Disadvantage: humans and memorability ightarrow \otimes
 - What is a good policy?
- Increase complexity by at least 4 orders of magnitude
 - Advantage: MD5-crypt still usable
 - Disadvantage: passwords not backwards compatible
 - Disadvantage: Moore's law
 - Switch to SHA-crypt or PBKDF2

Conclusions

Should we worry?

- Yes, if your password length is < 9 characters
- Increase entropy in passwords \rightarrow password policy
 - Advantage: old schemes still usable
 - Disadvantage: humans and randomness \rightarrow $\ensuremath{\textcircled{\sc s}}$
 - Disadvantage: humans and memorability \rightarrow \circledast
 - What is a good policy?
- Increase complexity by at least 4 orders of magnitude
 - Advantage: MD5-crypt still usable
 - Disadvantage: passwords not backwards compatible
 - Disadvantage: Moore's law
 - Switch to SHA-crypt or PBKDF2

Future work

Future work

- Optimizations
 - Additional algorithm optimizations
 - Newer hardware
 - Time-Memory Trade-Off
- Heterogenous crack clusters
 - Consisting of a mix of GPU's, CPU's, mobile devices, etc.
 - Large distributed environments → Jungle computing or Amazon's EC2
 - OpenCL
- Other schemes and applications
 - SHA-crypt, bcrypt, etc.
 - Frameworks as PBKDF2

Questions and discussion

Thank you for your attention!

- Any questions?
- Contact: Sprengers.Martijn@kpmg.nl

References

D. Bernstein, H. C. Chen, C. M. Cheng, T. Lange, R. Niederhagen, P. Schwabe, and B. Y. Yang. ECC2K-130 on NVIDIA GPUs.

D. J. Bernstein, H. C. Chen, M. S. Chen, C. M. Cheng, C. H. Hsiao, T. Lange, Z. C. Lin, and B. Y. Yang.

The billion-mulmod-per-second PC. SHARCS Workshop, 2009.

O. Harrison and J. Waldron.

Practical symmetric key cryptography on modern graphics hardware. In Proceedings of the 17th conference on Security symposium, pages 195–209. USENIX Association, 2008.

Owen Harrison and John Waldron.

Efficient acceleration of asymmetric cryptography on graphics hardware. In Bart Preneel, editor, *AFRICACRYPT*, volume 5580 of *Lecture Notes in Computer Science*, pages 350–367. Springer, 2009.

S. A. Manavski.

CUDA compatible GPU as an efficient hardware accelerator for AES cryptography.

In Signal Processing and Communications, 2007. ICSPC 2007. IEEE International Conference on, pages 65–68. IEEE, 2008.

Execution configuration optimizations

Occupancy

Occupancy = $\frac{\text{Active warps per multiprocessor } W_{\alpha}}{\text{Maximum active warps per multiprocessor } W_{max}}$

- W_{α} restricted by *register* and *shared memory* usage
- W_{max} restricted by hardware (32 in our case)
- Programmer can influence W_{α} by setting the number of threads per block T_b correctly

Execution configuration optimizations

Theoretical calculation

March 17-18, 2012

Execution configuration optimizations

Influence on our implementation

Martijn Sprengers, Lejla Batina

March 17-18, 2012

