
Cryptanalysis of MD5 & SHA-1

Marc Stevens

CWI, Amsterdam

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAAAAAAA

Overview

• Part I: introduction

– Merkle-Damgard and compression functions

– Cryptanalytic history of MD5 & SHA-1

• Part II: collision search algorithm

– Differential paths & sufficient bitconditions

– Collision search algorithm

– Massively-parallel architectures

• Part III: new cryptanalysis SHA-1

– Local collisions & disturbance vectors

– New exact joint local collision analysis

– Deriving sufficient conditions

– New attacks

– HashClash: open-source project

Part I

introduction

• Merkle-Damgard and compression functions

• Cryptanalytic history of MD5 & SHA-1

Merkle-Damgard

• Message split into pieces

• Iteratively processed w/ compression function

• Internal state: (initialized with)

IHV IV

M M0; : : : ;MN¡1

Compression function attacks

• Collision attack

– Given IHV: compute M M’ s/t

 CF(IHV,M) = CF(IHV,M’)

• Near-collision attack

– Given IHV, IHV’, D: compute M M’ s/t

 CF(IHV’,M’) - CF(IHV,M) 2 D

• Pseudo-collision attack

– Compute (IHV,M) (IHV’, M’) s/t

 CF(IHV,M) = CF(IHV,M’)

– Called “free-start” if IHV=IHV’

Short history of MD5 attacks

1992 MD5 published [Riv92]

1993 pseudo-collision attack [dBB93]

1995 free-start pseudo-collision attack [Dob95]

2004 identical-prefix collision found: 240 calls [WY04]

2006 chosen-prefix collision: 249 calls [SLdW07]

2009 identical-prefix: 216 calls [SSA+09]

 chosen-prefix: 239 calls [SSA+09]

 realistic abuse scenario: rogue CA [SSA+09]

Short history of MD5 attacks

Shortest collision attacks

2009 short chosen-prefix collision: 253.2 calls [SSA+09]

• birthday-search + 1 near-collision

• # collision bits: 80+512 bits

• # prefix bits = 432 + 512 ¢ N bits

2010 compression function collision found [XF10]

• 512-bit collision

• no details published

• $10,000 challenge

2012 challenge broken:249.8 calls [S12]

Short history of SHA-1 attacks

1995 SHA-1 published [NIST95]

2005 first SHA-1 collision attack: 269 calls [WYY05]

 - two near-collision attacks: 2∙268 calls

2005 claim: 263 calls [WYY05]

2007 claim: 261 calls [MRR07]

2009 paper: 252 calls [MHP09]

2011 [RFC6194]: first attack is best attack

2012 New results in [thesis]

• Exact joint local-collision analysis

• Preliminary near-collision attack: 257.5 calls

• Extends to identical- & chosen-prefix collision

Part II

collision search algorithm

• Differential paths & sufficient bitconditions

• Collision search algorithm

• Massively-parallel architectures

Preliminaries – MD5

• Compression function:

• Uses 32-bit words

• Initialization

– B expanded into 64 words:

– Working state: 4 words
for t=0 set to

• Step function:

• Finalization:

(IHV in; B)! IHV out

f0;1g32 $ Z232

W0; : : : ;W63

(Qt¡3;Qt¡2;Qt¡1;Qt)

Ft = ft(Qt;Qt¡1;Qt¡2);

Qt+1 = Qt + (Ft +Qt¡3 +Wt +ACt)
<<<RCt:

IHV in

IHV out = IHV in+¦(Q61;Q62;Q63;Q64)

t = 0; : : : ;63

Preliminaries – SHA-1

• Compression function:

• Uses 32-bit words

• Initialization

– B expanded into 80 words:

– Working state: 5 words
for t=0 set to

• Step function:

• Finalization:

(IHV in; B)! IHV out

f0;1g32 $ Z232

W0; : : : ;W79

(Qt¡4;Qt¡3;Qt¡2;Qt¡1;Qt)

Ft = ft(Qt¡1;Q
<<<30
t¡2 ;Q<<<30

t¡3);

Qt+1 = Q<<<5
t + Ft +Q<<<30

t¡4 +Wt +ACt:

IHV in

IHV out = IHV in+¦(Q76;Q77;Q78;Q79;Q80)

t = 0; : : : ;79

Differential analysis

• Analyze two instances of computation

– First instance: variables

– Second instance: variables

– Modular difference:

– Bitwise difference:

– Bitwise to modular:

• Differential path

– Precise differences for all variables

– Satifying step function

• MD5

• SHA-1

X

X0

±X =X0 ¡X

¢X = (X0[b]¡X[b])31b=0 2 f¡1;0;1g32

±Qt+1 = ±(Q<<<5t) + ±Ft + ±(Q<<<30t¡4) + ±Wt

±X =
P31

b=0 2
b ¢¢X[b]

¢Qi; ¢Ft; ±Wt

±Qt+1 = ±Qt +(±Ft+ ±Qt¡3 + ±Wt)
<<<RCt

Sufficient conditions

• Derive bitconditions from differential path

– Conditions on first instance variables

 s/t differential path holds using given

• Benefits collision finding algorithm

– Only needs to consider one instance (mostly)

– Bitconditions are easily tested

Wt; Qi

±Wt; ±IHV in

Sufficient conditions

Sufficient bitconditions

• Working state bitconditions

– Free

– Constant: 0,1

– Previous bits

• E.g.

Qt[b] = : : :

Qt¡1[b];Qt¡1[b]

Qt¡1[b+2];Qt¡1[b+2]

Qt¡2[b+2];Qt¡2[b+2]

Sufficient conditions

Sufficient bitconditions

• Message bitconditions

– MD5

• Message expansion permutation

• Desired are immediate

– SHA-1

• Bitwise linear message expansion

• Need linear bitrelations to achieve desired

• All linear bitrelations can be satisfied in first 16 steps

Wt[b] = c+

tX

i=0

32X

j=0

cij ¢Wi[j] mod 2

Wt = (Wt¡3©Wt¡8 ©Wt¡14 ©Wt¡16)
<<<1

±Wt

±Wt

Collision finding algorithm

• Basic depth-first search

– Start at step 0

– At step t find Wt, Qt+1 satisfying conditions

• For each valid pair: continue with step t+1

– After first 16 steps message fully determined

– Verify remaining Qi conditions

• Apply speedup: tunnel/boomerang/neutral-bit/...
– At step k ¸ 16: conditions on steps 0,...,k-1 hold

• Apply small changes in first 16 steps
s/t conditions on steps 0,...,k-1 still hold

• (Partially) recompute steps 16,...,k

• Verify bitconditions on Qk+1

Massively-parallel architectures

• Collision search freely parallelizable

– Splitting entire search space

• Massively-parallel architectures

– Higher performance/cost-ratio

• Target architecture: NVIDIA GPUs

– 32 threads of computation grouped in 1 warp

– Many active warps on GPU

– Same instruction path per warp: requires coherency

– Very suitable for birthday search

• Complete compression functions computations

– Less suitable for collision search

• Split into individual small steps

• many loops and branches

Massively-parallel architectures

Ideas for collision search on GPU

• First 16 steps

– Per instance:

• Buffers of -pairs for each step + pointer

• Exhaustively go through freedoms for one step

• Store valid in buffer

• Move pointer through buffer while processing next step

– Option 1: process many instances in 1 warp

• Many uncoalesced reads and writes

– Option 2: process 1 instance in 16 threads

• Coalesced reads and writes

• Need to orchestrate writing in shared list

• Smaller memory footprint (less active instances)

(Wt;Qt+1)

(Wt;Qt+1)

Massively-parallel architectures

• Remaining steps

– Basic idea: split into tasks: blocks at same step

• Warp: read very similar tasks for same step

• Process tunnel & verify conditions

• Write successes as new tasks for succeeding step

– Option 1: process 1 task in 16 threads

• Coalesced reads

• Divide k-bit tunnel over 16 threads, k ¸ 4

– Option 2: process many tasks in 1 warp

• Combine very similar tasks together
to get large coalesced/uncoalesced-read ratio

• Loop k-bit tunnel

• Possible free-start next step

– Combine these two steps within 1 task

– If on average 1 or more successes per thread

Massively-parallel architectures

• Further considerations

– Optimal: groups of 16 very similar tasks

• Maximize coalesced reads & writes

– What if: groups of 15 very similar tasks + 1 task

• Reads and writes uncoalesced

• Extra overhead: up to 2x slower reads & writes

• Skip +1 task: only 1/16 loss

• Threshold? 15+1 / 14+2 / 13+3 ?

– What if: single task without very similar siblings

• Expensive on GPU (as per above case)

• Handle by CPU

• Avoid loss of tasks

Massively-parallel architectures

• Further considerations

– Goal is to maxize performance/cost ratio

– At least above p/c ratio for CPU

– Significantly slower than raw compression function

• Need many loops & tests

• Overhead due to tasks

• Additional reads & writes

• Less time spent in actual step computations

– Expect to gain at least a small factor

– Very happy to be ~20x faster than CPU core

Part III

new cryptanalysis SHA-1

• Local collisions & disturbance vectors

• New exact joint local collision analysis

• Deriving sufficient bitconditions & bitrelations

• New attacks

• HashClash: open-source project

Deriving sufficient conditions

Deriving sufficient conditions for collision search

• First 20 steps

– Differential path construction

– [dCR06] Coding theory principles

– [YSN+07][thesis] Forward, backward & join in the middle

– Message bitrelations (uni-variable)

– Working state bitconditions

• Last 60 steps

– Disturbance vector analysis

– Combine local collisions

Local collisions

• Local collision

– single disturbance:

– 5 corrections:

– Any step, any bit

• Variations

– signs

– carries

Disturbance vector

• Linear message expansion

• Combine local collisions

– Disturbance vector

– Vector

• Linear combination of D.V.

• Forward-shifted & rotated

• Also satisfies msg.exp.

– XOR difference

• Need linear message bitrelations
to obtain desired

• More precise: set of desired

– Same success probability

– More freedoms

Wt = (Wt¡3©Wt¡8 ©Wt¡14 ©Wt¡16)
<<<1

(Wt ©W 0
t)
79
t=0

±Wt

±Wt

Disturbance vector

• Disturbance vector analysis

– Estimating collision attack complexity

– Various cost functions

• Hamming weight: # local collisions

• Sum of # bitconditions per local collision

• Product of max. success probability per local collision

– All assume independence of local collisions

• Inaccurate [Man11][thesis]

• Affects choice for “optimal” disturbance vector

• May lead to sub-optimal complexity

• May even lead to discrepencies between theoretical and
actual attack complexity

D.V.-allowed differential paths

• Differential path over steps 20,...,79

– message differences (precondition)

– differences at step 20 (precondition)

– ending differences (postcondition)

• Set of allowed differential paths

– Matching D.V. disturbances (up to carries)

– With message differences possible under given

– Non-zero probability

– Theoretical set: never directly computed

P

¤ =©(P) = (±(Q<<<3016);¢Q17;¢Q18;¢Q19;¢Q20)

±IHV di® =ª(P) = (±Q80; ±Q79; ±(Q
<<<30
78); ±(Q<<<3077); ±(Q<<<3076))

w = (P) = (±Wt)
79
t=20

D[20;79]

Wt ©W 0
t

D.V. - maximum success probability

• Success probabilities

– Group diff. paths by pre-/post-conditions

– Sum of probabilities of diff. paths within group

– Deterministic algorithm

• Maximum success probability

pw;¤;±IHV diff
=

X

P2D[20;79]

¤=©(P)
w=(P)

±IHV diff=ª(P)

Pr[P]

pmax = max
w
¤

±IHV diff

pw;¤;±IHV diff

Deriving optimal sufficient conditions

• Differences at step 20

– Select set of -values achieving pmax

– Use to construct differential path over first 20 steps

– Let match the found differential path

• First near-collision

– No restriction to specific -value

– Speedup by allowing many values

– Look at all pairs leading to pmax

– Keep only with Nmax pairs: speedup by Nmax

• Second near-collision

– Restriction to specific -value: no similar speedup

– Keep only that lead to pmax

• Determine message bitrelations from set of

I ¤

I
e¤

±IHV di®

(w; ±IHV di®)

w

±IHV di®

w

w

New D.V. cost function

• New disturbance vector cost function

– correction due to fulfillment of and
before fulfillment of in attack implementation

• Comparison cost function

 where breaks D.V. into separate D.V.s
– Each containing 1 local collision

– Using local collision compression

FDC((DVt)
79
t=0) = max

w
¤

±IHVdiff

pw;¤;±IHV diff
¢ 2w(¢Q17)+w(¢Q18)

¢Q17 ¢Q18

¢F20

FIC((DVt)
79
t=0) =

Y

Y2¡((DVt)79t=0)

FDC(Y)

¡

Comparing effect of dependent L.C.s

• Comparison for selected disturbance vectors

– Results: -log2

– Selection by (near-)optimal FDC

– Note: maximum success probability only obtained
using the optimal message differences

DV FDC FIC di®

I(48; 0) 71:4 80:5 9:1

I(49; 0) 72:2 79:6 7:4

I(50; 0) 71:9 81:4 9:5

I(51; 0) 73:3 85:8 12:5

I(48; 2) 73:8 75:7 1:9

I(49; 2) 73:8 74:1 0:3

II(50; 0) 73:0 77:4 4:4

II(51; 0) 71:9 77:7 5:8

II(52; 0) 71:8 79:4 7:6

Computing success probabilities

Computing

• Set too big to compute directly

• Observation:

– Effect of disturbance is local

– Many differential paths equivalent under change of signs

• Idea:

– Differential path reduction

• Remove differences ‘independent’ from pre-/post- conditions

– Set of all reduced paths from

• Iteratively computable

– Success probabilities over and

• Iteratively computable

– Together used to determine

p
w;e¤;±IHVdiff

D[20;79]

R[20;79] D[20;79]

wpw;P P 2 R[20;79]

p
w;e¤;±IHVdiff

Near-collision attack construction

• Preliminary first near-collision attack

– 192 possible

– 6 possible -values per : speedup factor 6

– runtime complexity of about 257.5 calls

– Publicly verifiable

– improves upon 268 by [WYY05]

• Second near-collision attack

– at least 6 times slower: 260.1 calls

– also more restrictions: slightly more slower

±IHV di®

±IHV di® w

Collision attack construction

• Identical-prefix collision attack

– First + second near-collision attack

– Complexity

• Estimated complexity: approx. 261 calls

• Improves upon 269 calls

• Chosen-prefix collision attack

– Birthday-search + second near-collision attack

– Complexity

• Birthday-search: average 277.06 calls

• Near-collision attack complexity negligible

• Average complexity: approx. 277.1 calls

• First chosen-prefix collision attack on SHA-1

Project HashClash

• HashClash @ Google Code
http://code.google.com/p/hashclash

– Published sources and binaries

– MD5

• Differential path construction

• Collision finding

• Birthday-search for chosen-prefix collisions
(supporting CPU, CUDA and CELL)

• Chosen-prefix collision GUI

– SHA-1

• Differential path construction

• Near-collision attack

• Soon: disturbance vector analysis

http://code.google.com/p/hashclash

Thank you for your attention

Questions?

More information

• Contact: marc@marc-stevens.nl

• Website: http://marc-stevens.nl/research

• HashClash: http://code.google.com/p/hashclash

• Information on MD5 attack applications:
http://www.win.tue.nl/hashclash

mailto:marc@marc-stevens.nl
mailto:marc@marc-stevens.nl
mailto:marc@marc-stevens.nl
http://marc-stevens.nl/
http://marc-stevens.nl/
http://marc-stevens.nl/
http://code.google.com/p/hashclash
http://www.win.tue.nl/hashclash

