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Overview 

• Part I: introduction 

– Merkle-Damgard and compression functions 

– Cryptanalytic history of MD5 & SHA-1 

• Part II: collision search algorithm 

– Differential paths & sufficient bitconditions 

– Collision search algorithm 

– Massively-parallel architectures 

• Part III: new cryptanalysis SHA-1 

– Local collisions & disturbance vectors 

– New exact joint local collision analysis 

– Deriving sufficient conditions 

– New attacks 

– HashClash: open-source project 

 



Part I 

introduction 
 

• Merkle-Damgard and compression functions 

• Cryptanalytic history of MD5 & SHA-1 

 



Merkle-Damgard 

• Message     split into pieces 

• Iteratively processed w/ compression function 

• Internal state:         (initialized with     ) 

 

IHV IV

M M0; : : : ;MN¡1



Compression function attacks 

• Collision attack 

– Given IHV:  compute  M  M’  s/t   

  CF(IHV,M) = CF(IHV,M’) 

 

• Near-collision attack 

– Given IHV, IHV’, D:  compute  M  M’  s/t 

  CF(IHV’,M’) - CF(IHV,M)  2 D 

 

• Pseudo-collision attack 

– Compute  (IHV,M)  (IHV’, M’)  s/t   

  CF(IHV,M) = CF(IHV,M’) 

– Called “free-start” if  IHV=IHV’ 



Short history of MD5 attacks 

1992 MD5 published [Riv92] 

1993 pseudo-collision attack [dBB93] 

1995 free-start pseudo-collision attack [Dob95] 

2004 identical-prefix collision found: 240 calls [WY04] 

2006 chosen-prefix collision: 249 calls [SLdW07] 

2009 identical-prefix: 216 calls [SSA+09] 

     chosen-prefix: 239 calls [SSA+09] 

     realistic abuse scenario: rogue CA [SSA+09] 

 

 

 



Short history of MD5 attacks 

Shortest collision attacks 

 

2009 short chosen-prefix collision: 253.2 calls [SSA+09] 

• birthday-search + 1 near-collision 

• # collision bits: 80+512 bits 

• # prefix bits = 432 + 512 ¢ N bits 

2010 compression function collision found [XF10] 

• 512-bit collision 

• no details published 

• $10,000 challenge 

2012 challenge broken:249.8 calls [S12] 

 

 

 



Short history of SHA-1 attacks 

1995 SHA-1 published [NIST95]  

2005 first SHA-1 collision attack: 269 calls [WYY05] 

     - two near-collision attacks: 2∙268 calls 

2005 claim: 263 calls [WYY05] 

2007 claim: 261 calls [MRR07] 

2009 paper: 252 calls [MHP09] 

2011 [RFC6194]: first attack is best attack 

2012 New results in [thesis] 

• Exact joint local-collision analysis 

• Preliminary near-collision attack: 257.5 calls 

• Extends to identical- & chosen-prefix collision 



Part II 

collision search algorithm 
 

• Differential paths & sufficient bitconditions 

• Collision search algorithm 

• Massively-parallel architectures 

 



Preliminaries – MD5 

• Compression function: 

• Uses 32-bit words 

• Initialization 

– B expanded into 64 words: 

– Working state: 4 words 
for t=0 set to  

• Step function: 

 

 

• Finalization: 

(IHV in; B)! IHV out

f0;1g32 $ Z232

W0; : : : ;W63

(Qt¡3;Qt¡2;Qt¡1;Qt)

Ft = ft(Qt;Qt¡1;Qt¡2);

Qt+1 = Qt + (Ft +Qt¡3 +Wt +ACt)
<<<RCt:

IHV in

IHV out = IHV in+¦(Q61;Q62;Q63;Q64)

t = 0; : : : ;63



Preliminaries – SHA-1 

• Compression function: 

• Uses 32-bit words 

• Initialization 

– B expanded into 80 words: 

– Working state: 5 words 
for t=0 set to  

• Step function: 

 

 

• Finalization: 

(IHV in; B)! IHV out

f0;1g32 $ Z232

W0; : : : ;W79

(Qt¡4;Qt¡3;Qt¡2;Qt¡1;Qt)

Ft = ft(Qt¡1;Q
<<<30
t¡2 ;Q<<<30

t¡3 );

Qt+1 = Q<<<5
t + Ft +Q<<<30

t¡4 +Wt +ACt:

IHV in

IHV out = IHV in+¦(Q76;Q77;Q78;Q79;Q80)

t = 0; : : : ;79



Differential analysis 

• Analyze two instances of computation 

– First instance:   variables  

– Second instance: variables  

– Modular difference:   

– Bitwise difference: 

– Bitwise to modular:  

• Differential path 

– Precise differences for all variables 

 

– Satifying step function 
 

• MD5 

 

• SHA-1 

X

X0

±X =X0 ¡X

¢X = (X0[b]¡X[b])31b=0 2 f¡1;0;1g32

±Qt+1 = ±(Q<<<5t ) + ±Ft + ±(Q<<<30t¡4 ) + ±Wt

±X =
P31

b=0 2
b ¢¢X[b]

¢Qi; ¢Ft; ±Wt

±Qt+1 = ±Qt +(±Ft+ ±Qt¡3 + ±Wt)
<<<RCt



Sufficient conditions 

• Derive bitconditions from differential path 

– Conditions on first instance variables 

    s/t differential path holds using given 

 

• Benefits collision finding algorithm 

– Only needs to consider one instance (mostly) 

– Bitconditions are easily tested 

Wt; Qi

±Wt; ±IHV in



Sufficient conditions 

Sufficient bitconditions  

• Working state bitconditions 

– Free 

– Constant: 0,1 

– Previous bits 

• E.g. 

Qt[b] = : : :

Qt¡1[b];Qt¡1[b]

Qt¡1[b+2];Qt¡1[b+2]

Qt¡2[b+2];Qt¡2[b+2]



Sufficient conditions 

Sufficient bitconditions  

• Message bitconditions 

– MD5 

• Message expansion permutation 

• Desired        are immediate 

– SHA-1 

• Bitwise linear message expansion 

 

• Need linear bitrelations to achieve desired  

 

 

 

• All linear bitrelations can be satisfied in first 16 steps 

Wt[b] = c+

tX

i=0

32X

j=0

cij ¢Wi[j] mod 2

Wt = (Wt¡3©Wt¡8 ©Wt¡14 ©Wt¡16)
<<<1

±Wt

±Wt



Collision finding algorithm 

• Basic depth-first search 

– Start at step 0 

– At step t find Wt, Qt+1 satisfying conditions 

• For each valid pair: continue with step t+1 

– After first 16 steps message fully determined 

– Verify remaining Qi conditions 

• Apply speedup: tunnel/boomerang/neutral-bit/... 
– At step k ¸ 16: conditions on steps 0,...,k-1 hold 

• Apply small changes in first 16 steps 
s/t conditions on steps 0,...,k-1 still hold 

• (Partially) recompute steps 16,...,k 

• Verify bitconditions on Qk+1 



Massively-parallel architectures 

• Collision search freely parallelizable 

– Splitting entire search space 

• Massively-parallel architectures 

– Higher performance/cost-ratio 

• Target architecture: NVIDIA GPUs 

– 32 threads of computation grouped in 1 warp 

– Many active warps on GPU 

– Same instruction path per warp: requires coherency 

– Very suitable for birthday search 

• Complete compression functions computations 

– Less suitable for collision search 

• Split into individual small steps 

• many loops and branches 



Massively-parallel architectures 

Ideas for collision search on GPU 

• First 16 steps 

– Per instance: 

• Buffers of                -pairs for each step + pointer 

• Exhaustively go through freedoms for one step 

• Store valid                 in buffer 

• Move pointer through buffer while processing next step 

– Option 1: process many instances in 1 warp 

• Many uncoalesced reads and writes 

– Option 2: process 1 instance in 16 threads 

• Coalesced reads and writes 

• Need to orchestrate writing in shared list 

• Smaller memory footprint (less active instances) 

 

 

 

(Wt;Qt+1)

(Wt;Qt+1)



Massively-parallel architectures 

• Remaining steps 

– Basic idea: split into tasks: blocks at same step 

• Warp: read very similar tasks for same step 

• Process tunnel & verify conditions 

• Write successes as new tasks for succeeding step 

– Option 1: process 1 task in 16 threads 

• Coalesced reads 

• Divide k-bit tunnel over 16 threads, k ¸ 4 

– Option 2: process many tasks in 1 warp 

• Combine very similar tasks together 
to get large coalesced/uncoalesced-read ratio 

• Loop k-bit tunnel 

• Possible free-start next step 

– Combine these two steps within 1 task 

– If on average 1 or more successes per thread 

 

 

 



Massively-parallel architectures 

• Further considerations 

– Optimal: groups of 16 very similar tasks 

• Maximize coalesced reads & writes 

– What if: groups of 15 very similar tasks + 1 task 

• Reads and writes uncoalesced 

• Extra overhead: up to 2x slower reads & writes 

• Skip +1 task: only 1/16 loss 

• Threshold? 15+1 / 14+2 / 13+3 ? 

– What if: single task without very similar siblings 

• Expensive on GPU (as per above case) 

• Handle by CPU 

• Avoid loss of tasks 

 

 



Massively-parallel architectures 

• Further considerations 

– Goal is to maxize performance/cost ratio 

– At least above p/c ratio for CPU 

– Significantly slower than raw compression function 

• Need many loops & tests 

• Overhead due to tasks 

• Additional reads & writes 

• Less time spent in actual step computations 

– Expect to gain at least a small factor 

– Very happy to be ~20x faster than CPU core 



Part III 

new cryptanalysis SHA-1 
 

• Local collisions & disturbance vectors 

• New exact joint local collision analysis 

• Deriving sufficient bitconditions & bitrelations 

• New attacks 

• HashClash: open-source project 

 



Deriving sufficient conditions 

Deriving sufficient conditions for collision search 

• First 20 steps 

– Differential path construction 

– [dCR06] Coding theory principles 

– [YSN+07][thesis] Forward, backward & join in the middle 

– Message bitrelations (uni-variable) 

– Working state bitconditions 

• Last 60 steps 

– Disturbance vector analysis 

– Combine local collisions 

 



Local collisions 

• Local collision 

– single disturbance:  

– 5 corrections: 

– Any step, any bit 

• Variations 

– signs 

– carries 



Disturbance vector 

• Linear message expansion 

 

• Combine local collisions 

– Disturbance vector 

– Vector               

• Linear combination of D.V. 

• Forward-shifted & rotated 

• Also satisfies msg.exp. 

– XOR difference    

• Need linear message bitrelations 
to obtain desired 

• More precise: set of desired 

– Same success probability 

– More freedoms 

Wt = (Wt¡3©Wt¡8 ©Wt¡14 ©Wt¡16)
<<<1

(Wt ©W 0
t)
79
t=0

±Wt

±Wt



Disturbance vector 

• Disturbance vector analysis 

– Estimating collision attack complexity 

– Various cost functions 

• Hamming weight: # local collisions 

• Sum of # bitconditions per local collision 

• Product of max. success probability per local collision 

 

– All assume independence of local collisions 

• Inaccurate [Man11][thesis] 

• Affects choice for “optimal” disturbance vector 

• May lead to sub-optimal complexity 

• May even lead to discrepencies between theoretical and 
actual attack complexity 

 



D.V.-allowed differential paths 

• Differential path     over steps 20,...,79 

– message differences (precondition) 

 

– differences at step 20 (precondition) 

 

– ending differences (postcondition) 

 

 

• Set           of allowed differential paths  

– Matching D.V. disturbances (up to carries) 

– With message differences possible under given 

– Non-zero probability 

– Theoretical set: never directly computed 

 

P

¤ =©(P) = (±(Q<<<3016 );¢Q17;¢Q18;¢Q19;¢Q20)

±IHV di® =ª(P) = (±Q80; ±Q79; ±(Q
<<<30
78 ); ±(Q<<<3077 ); ±(Q<<<3076 ))

w = (P) = (±Wt)
79
t=20

D[20;79]

Wt ©W 0
t



D.V. - maximum success probability 

• Success probabilities 

– Group diff. paths by pre-/post-conditions 

– Sum of probabilities of diff. paths within group 

 

 

 

 

– Deterministic algorithm 

• Maximum success probability 

 

 

 

 

 

 

pw;¤;±IHV diff
=

X

P2D[20;79]

¤=©(P)
w=(P)

±IHV diff=ª(P)

Pr[P]

pmax = max
w
¤

±IHV diff

pw;¤;±IHV diff



Deriving optimal sufficient conditions 

• Differences at step 20 

– Select set    of     -values achieving pmax 

– Use    to construct differential path over first 20 steps 

– Let     match the found differential path 

• First near-collision 

– No restriction to specific             -value 

– Speedup by allowing many values 

– Look at all pairs                   leading to pmax  

– Keep only     with Nmax pairs: speedup by Nmax 

• Second near-collision 

– Restriction to specific             -value: no similar speedup 

– Keep only     that lead to pmax  

• Determine message bitrelations from set of 

 

I ¤

I
e¤

±IHV di®

(w; ±IHV di®)

w

±IHV di®

w

w



New D.V. cost function 

• New disturbance vector cost function 

 

 

– correction due to fulfillment of          and 
before fulfillment of         in attack implementation 

 

• Comparison cost function 
 
 
 

    where    breaks D.V. into separate D.V.s  
– Each containing 1 local collision 

– Using local collision compression 

 

FDC((DVt)
79
t=0) = max

w
¤

±IHVdiff

pw;¤;±IHV diff
¢ 2w(¢Q17)+w(¢Q18)

¢Q17 ¢Q18

¢F20

FIC((DVt)
79
t=0) =

Y

Y2¡((DVt)79t=0)

FDC(Y )

¡



Comparing effect of dependent L.C.s 

• Comparison for selected disturbance vectors 

 

 

 

 

 

 

 

– Results: -log2 

– Selection by (near-)optimal FDC 

– Note: maximum success probability only obtained 
using the optimal message differences 

DV FDC FIC di®

I(48; 0) 71:4 80:5 9:1

I(49; 0) 72:2 79:6 7:4

I(50; 0) 71:9 81:4 9:5

I(51; 0) 73:3 85:8 12:5

I(48; 2) 73:8 75:7 1:9

I(49; 2) 73:8 74:1 0:3

II(50; 0) 73:0 77:4 4:4

II(51; 0) 71:9 77:7 5:8

II(52; 0) 71:8 79:4 7:6



Computing success probabilities 

Computing  

• Set           too big to compute directly  

• Observation: 

– Effect of disturbance is local 

– Many differential paths equivalent under change of signs 

• Idea: 

– Differential path reduction 

• Remove differences ‘independent’ from pre-/post- conditions  

– Set            of all reduced paths from 

• Iteratively computable 

– Success probabilities          over     and 

• Iteratively computable  

– Together used to determine 

 

 

 

 

p
w;e¤;±IHVdiff

D[20;79]

R[20;79] D[20;79]

wpw;P P 2 R[20;79]

p
w;e¤;±IHVdiff



Near-collision attack construction 

• Preliminary first near-collision attack 

– 192 possible              

– 6 possible             -values per    : speedup factor 6 

– runtime complexity of about 257.5 calls 

– Publicly verifiable 

– improves upon 268 by [WYY05] 

 

• Second near-collision attack 

– at least 6 times slower: 260.1 calls 

– also more restrictions: slightly more slower 

 

 

 

±IHV di®

±IHV di® w



Collision attack construction 

• Identical-prefix collision attack  

– First + second near-collision attack 

– Complexity 

• Estimated complexity: approx. 261 calls 

• Improves upon 269 calls 

• Chosen-prefix collision attack 

– Birthday-search + second near-collision attack 

– Complexity 

• Birthday-search: average 277.06 calls 

• Near-collision attack complexity negligible 

• Average complexity: approx. 277.1 calls 

• First chosen-prefix collision attack on SHA-1 

 

 



Project HashClash 

• HashClash @ Google Code 
http://code.google.com/p/hashclash 

– Published sources and binaries 

– MD5 

• Differential path construction 

• Collision finding  

• Birthday-search for chosen-prefix collisions 
(supporting CPU, CUDA and CELL) 

• Chosen-prefix collision GUI 

– SHA-1 

• Differential path construction 

• Near-collision attack 

• Soon: disturbance vector analysis 

 

 

 

 

http://code.google.com/p/hashclash


Thank you for your attention 

Questions? 



More information 

• Contact: marc@marc-stevens.nl 

 

• Website: http://marc-stevens.nl/research 

 

• HashClash: http://code.google.com/p/hashclash 

  

• Information on MD5 attack applications: 
http://www.win.tue.nl/hashclash 
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