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Background and our motivation（1/2）

� There are a lot of previous works that analyze the security of 

ECC and RSA. But the comparison of strengths varies 

depending on analysis.
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Our motivation is once again to compare the security strengths, Our motivation is once again to compare the security strengths, Our motivation is once again to compare the security strengths, Our motivation is once again to compare the security strengths, 
considering stateconsidering stateconsidering stateconsidering state----ofofofof----thethethethe----art of theory and experiments.art of theory and experiments.art of theory and experiments.art of theory and experiments.
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Background and our motivation（2/2）

� To compare the strengths of ECC and RSA, we estimate the 
computing power required to solve the ECDLP and the IFP in 
a year, respectively.

� The security of ECC and RSA ≒ the hardness of the ECDLP and the 
IFP, respectively. 

� In this talk, we focus on the hardness of the ECDLP and the 
IFP only from the view point of software implementation.

�Using special-purpose hardware for solving the ECDLP or the IFP is a 
theme of great interest at this conference.

� But these platforms and architectures vary, and it is difficult to make an 
analysis on the cost performance. ⇒ This is a future work.
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[ECDLP] Pollard’s rho method

�Definition of the ECDLP:
�Given an elliptic curve E/GF(q) and two points S, T of large prime order n, 
find k with T = kS.

�Our policy to estimate the complexity of the rho method:

� Since the rho method is probabilistic, we estimate the complexity 
required to solve the ECDLP with 99% probability in order to unify the 
success probability of solving the IFP

� Furthermore, we focus on three types in the ECDLP: 

• prime fields, binary fields, and Koblitz curves types.

A starting point 
X0 = X = a・S + b・T

Xi = f(X0)

X2 = f(X1)

From Xi = Xj, we have 

ci・S + di・T = cj・S + dj・T
This gives the solution.

For any i, we have
Xi = ci・S + di・T

� Pollard’s rho method:
� It is the fastest known algorithm for 
solving the ECDLP.

� First generate {Xi} successively by an 
iteration function f. Then find a 
collision Xi = Xj.
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Suitable iterations for the rho method (1/2)

� Prime and binary fields cases:
� Teske’s L-adding walk: fTA(X) = X + Mj.

• Mi: pre-computed points (i = 1, …, L).

• L : partition number, which affects the 
randomness.

� From experiments, fTA with L≧≧≧≧20 
has enough randomness on 
average.
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Our experimental result on δ with fTA

δδδδ := the average of #{ iterations with f } / Exp.:= the average of #{ iterations with f } / Exp.:= the average of #{ iterations with f } / Exp.:= the average of #{ iterations with f } / Exp.
(‘Exp’ = the expected number of iterations with random walks)

If δ is close to 1, f has the enough randomness.

�Choice of iterations
� The complexity heavily depends on choice of iteration functions.
• An iteration function f is the most suitable if f is a random walk. 

� To analyze the randomness of f, we define 
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Suitable iterations for the rho method (2/2)

� Koblitz curves case:
�Gallant et al.’s function: fGLV([X]) = [g(X)], g(X) = X + φ

j(X)

•φ: the Frobenius map, j = hashm([X]) 

• [X]: the equivalent class containing X

� This function is well-defined on E/~ and suitable for the speed-up with φ
and the negation map.

• E/~: the set of the equivalent classes.

�Our experimental result on δ with fGLV on Koblitz curves E(GF(2
m)):

� From experiments, fGLV has enough randomness on average.

1.011.031.101.06δ

m = 89m = 83m =53m = 41
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Our method to estimate the complexity 

� The complexity of the rho method is determined by

① the number of iterations, and 

② the processing performance of iterations.

To estimate the complexity, we fix fTA with L≧20 and fGLV, which have 
enough randomness on average.   

We estimate the number of iterations required to solve the We estimate the number of iterations required to solve the We estimate the number of iterations required to solve the We estimate the number of iterations required to solve the 
ECDLP with 99% probability, by considering the distribution ECDLP with 99% probability, by considering the distribution ECDLP with 99% probability, by considering the distribution ECDLP with 99% probability, by considering the distribution 
of the frequencies.of the frequencies.of the frequencies.of the frequencies.

We estimate the processing performance of iterations by We estimate the processing performance of iterations by We estimate the processing performance of iterations by We estimate the processing performance of iterations by 
using the previously known best records.using the previously known best records.using the previously known best records.using the previously known best records.
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① The number of iterations

�Distribution of the frequencies of the number of iterations:
�We solved the ECDLP over prime and binary fields of 40-bit for 10,000 
times. We also used fTA with L = 20. 

• We did not use the speed-up with the negation map.

� As the numbers of iterations can be modeled as waiting times, it is 
reasonable to approximate the graph by Γ-distribution.

� With this approximation, we estimate that we can solve the ECDLP
with 99% probability if we compute iterations by 3 times of the 
expected number.
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② The processing performance of iterations

�We use the latest data:

� Prime fields: 306.08 cycles / iteration (112-bit) [1]

� Binary fields: 1047 cycles / iteration (131-bit) [2]

� Koblitz curves: 1.62 × 1047 cycles / iteration (131-bit)

• 1.62 : overhead of transforming bases estimated by our implementation.

[1] D. Bernstein, T. Lange and P. Schwabe, “On the Correct Use of the Negation map in the Pollard 
rho Method”, PKC 2011.
[2] D. Bailey et al., “The Certicom Challenge ECC2-X”, SHARCS 2009.
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Estimation formula

� Estimation formula of the complexity of the rho method:

� T = the computing power to solve the ECDLP of N-bit with 99% probability

• FLOPS is the unit of T.

• Consider 2N as the order of the point S. Set Y = 365・24・60・60 (seconds) 
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Computing power to solve the ECDLP

� By our estimation formula, we estimate the computing power 
required to solve the ECDLP of N-bit in a year as follows:

� The vertical axis shows log10(T).
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For example, we have
T ≒ 1019 FLOPS in 
case N = 160-bit.
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[IFP] GNFS

�GNFS (= general number field sieve)

� It is the most efficient known algorithm for solving the IFP of large 
composite integers.

�Heuristically, the complexity of the GNFS for factoring N is given by

∞→
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� Our method to estimate the complexity of the GNFS:

① We analyze the o(1)-value of LN(s, c) experimentally.

② By using the previously known result, we set

• the o(1)-value of LN(s, c), and

• the leading coefficient ℓ of LN(s, c).
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① Analysis of the o(1)-value of LN(s, c)

� The o(1)-value of LN(s,c) is closely related to the o(1)-value of 
Φ(x, z).

� For two integers x and z, let Φ(x, z) denote the probability that an 
arbitrary integer in [1, x] is z-smooth.

� It is known that we have

Experimental result on the o(1)-value of 
Φ(x, z) with x≦32-bit. 
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� Experimental investigation:

�We expect that the o(1)-value of 
Φ(x, z) is included in [0, 0.2] as 
x→∞.

� Since Φ(x, z) is used twice for 
deriving LN(s, c), we expect that 
the o(1)-value of LN(s,c) is 
included in [0, 0.4] as x→∞→∞→∞→∞. 0
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② Setting of o(1) and ℓ

� Previously known results:

� The result in [3] gives the computing power required to solve the IFP of 
N-bit in a year as follows:

• Assume that the memory requirement is 2G Bytes.

• T = the computing power (FLOPS is the unit of T)

[3] CRYPTREC Report 2006, available at http://www.cryptrec.go.jp/report/c06_wat_final.pdf.

27.041322.231916.339512.6879log10T

204815361024768N

� o(1) and ℓ：
� The complexity of the GNFS is very close to each data of the above 
result if we set 

• o(1) = 0.348172, and （Note that o(1) is in [0, 0.4]）

• ℓ = 1.0373×107 as the leading coefficient of LN(s, c).

� Estimation formula：：：：
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Computing power to solve the IFP

� By our estimation formula, we estimate the computing power 
required to solve the IFP of N-bit in a year as follows:
� The vertical axis shows log10(T).
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The ECDLP vs the IFP (1/2)

� By comparing the computing power required to solve the 
ECDLP and the IFP, we estimate the bit sizes that provide the 
same level security:
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※If we use ordinary multiplication for elliptic operations, the ECDLP bit length 
can be reduced at most two bits.
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The ECDLP vs the IFP (2/2)

� In particular, we have

� 768-bit IFP ≒≒≒≒ 115-bit ECDLP over prime field, 112-bit over binary 
field, or 117-bit on Koblitz curves.

• The world records of 2011 for solving RSA and ECC are 768-bit RSA in 2010 
[4] and 112-bit ECC over prime field in 2009 [5], respectively.

• Since the times of these two records are close, we consider that these records 
indicate reasonability of our estimation.

� 1024-bit IFP ≒≒≒≒ 138-bit ECDLP over prime field, 136-bit over binary 
field, or 141-bit on Koblitz cuves.

• Although it is often said that 1024-bit RSA corresponds to 160-bit ECC, our 
estimation indicates that shorter ECC key sizes provide the same level of 
security.  

[4] T. Kleinjung et al. “Factorization of a 768-bit RSA modulus”, CRYPTO 2010.
[5] EPFL IC LACAL, “PlayStation 3 computing breaks 260 barrier 112-bit prime ECDLP solved”, 
http://lacal.epfl.ch/112bit_prime.
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Conclusions and future work

�Conclusions:
� ECDLP (the rho method):

• By considering the distribution of the frequencies, we estimate #{iterations} 
with 99% success probability.

• We also estimate t(f) by using the previously known best records.

� IFP (the GNFS):

• To estimate the complexity of the GNFS, we determine o(1) and ℓ of LN(s, c) 
by using our analysis of Φ(x, z) and CRYPTREC result [3].

�Our estimation showed that 1024-bit IFP ≒ 140-bit ECDLP.

• If we say 160-bit ECC has 80-bit security, our estimation indicates that 1024-
bit RSA does not reach this security.

� Future work:

�We need to analyze the complexity of the rho method with the iteration 
function proposed by [6], which seems to be the best known function on 
Koblitz curves.

� Furthermore, we need to check if the processing performance of 
iterations scales proportionally to N1.585.

[6] D. Bailey et al., “Breaking ECC2K-130”, http://eprint.iacr.org/2009/541.pdf.
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