Solving Discrete Logarithms in Smooth-Order Groups with CUDA

WATERLOO CHERITON SCHOOL OF COMPUTER SCIENCE

cs.uwaterloo.ca

Ryan Henry Ian Goldberg

 Image: Canada Cranada Vaner
 Canada Cranada Vaner
 Canada Cranada Cranada Cranada Cranada Cranada Cranada Vaner

 Image: Cranada Vaner
 Canada Cranada Cranada Cranada Vaner
 Canada Cranada Cranada Vaner

 Image: Cranada Cranada Cranada Cranada Cranada Cranada Vaner
 Image: Cranada Cranada Vaner
 Canada Cranada Vaner

 Image: Cranada Cranada Cranada Cranada Vaner
 Image: Cranada Vaner
 Image: Cranada Vaner

 Image: Cranada Cranada Vaner
 Image: Cranada Vaner
 Image: Cranada Vaner

solving Discrete Logarithms in Smooth-Order Groups with CUDA

Definition

Let \mathbb{G} be a cyclic group of order q and let $g \in \mathbb{G}$ be a generator. Given $\alpha \in \mathbb{G}$, the **discrete logarithm (DL) problem** is to find $x \in \mathbb{Z}_q$ such that $g^x = \alpha$.

Let \mathbb{G} be a cyclic group of order q and let $g \in \mathbb{G}$ be a generator. Given $\alpha \in \mathbb{G}$, the **discrete logarithm (DL) problem** is to find $x \in \mathbb{Z}_q$ such that $g^x = \alpha$.

Why do we care?

- Computing DLs is apparently difficult for classical computers
- Inverse problem (modular exponentiation) is easy
- Many cryptographic protocols exploit this asymmetry

An integer *n* is called *B***-smooth** if each of its prime factors is bounded above by *B*. A **smooth-order group** is just a group whose order is *B*-smooth for some "suitably small" value of *B*.

An integer *n* is called *B***-smooth** if each of its prime factors is bounded above by *B*. A **smooth-order group** is just a group whose order is *B*-smooth for some "suitably small" value of *B*.

Why do we care?

- If $\varphi(N)$ is *B*-smooth, then \mathbb{Z}_N^* has smooth order
- ► Many DL-based cryptographic protocols work in Z^{*}_N
- Pollard's rho algorithm (plus Pohlig-Hellman) solves DLs in time proportional to smoothness of group order

The **Compute Unified Device Architecture (CUDA)** is Nvidia's parallel computing architecture. It enables developers to use CUDA-enabled Nvidia GPUs for general purpose computing.

The **Compute Unified Device Architecture (CUDA)** is Nvidia's parallel computing architecture. It enables developers to use CUDA-enabled Nvidia GPUs for general purpose computing.

Why do we care?

- Nvidia GPUs are widely deployed, and offer better price-to-GFLOP ratio than CPUs
- Modern GPUs have many cores and support highly parallel computation
- Pollard's rho algorithm is extremely parallelizable

describe Pollard's rho algorithm and its parallel variant

- describe Pollard's rho algorithm and its parallel variant
- discuss CUDA and GP GPU computing on Nvidia GPUs

- describe Pollard's rho algorithm and its parallel variant
- discuss CUDA and GP GPU computing on Nvidia GPUs
- present our implementation of modular multiplication and parallel rho in CUDA and analyze its performance

- describe Pollard's rho algorithm and its parallel variant
- discuss CUDA and GP GPU computing on Nvidia GPUs
- present our implementation of modular multiplication and parallel rho in CUDA and analyze its performance
- point out a simple attack on Boudot's zero-knowledge range proofs

- describe Pollard's rho algorithm and its parallel variant
- discuss CUDA and GP GPU computing on Nvidia GPUs
- present our implementation of modular multiplication and parallel rho in CUDA and analyze its performance
- point out a simple attack on Boudot's zero-knowledge range proofs
- construct and analyze trapdoor discrete logarithm groups

Part I: Pollard's rho

Pollard's rho algorithm (1/4)

Problem

Given $g, h \in \mathbb{G}$, compute the discrete logarithm $x \in \mathbb{Z}_n$ of h with respect to g.

Pollard's rho algorithm (1/4)

Problem

Given $g, h \in \mathbb{G}$, compute the discrete logarithm $x \in \mathbb{Z}_n$ of h with respect to g.

Key observation:

- Consider elements $g^a h^b \in \mathbb{G}$ and search for collisions
- ► Since $g^{a_1}h^{b_1} = g^{a_2}h^{b_2} \implies g^{a_1-a_2} = h^{b_2-b_1}$, we have $a_1-a_2 \equiv x (b_2-b_1) \mod n \Longrightarrow x \equiv (a_1-a_2)(b_2-b_1)^{-1} \mod n$
- Birthday paradox: about √πn/2 selections should suffice ⇒ expected runtime and storage in Θ(√n)

Pollard's rho algorithm (2/4)

Problem

Given $g, h \in \mathbb{G}$, compute the discrete logarithm $x \in \mathbb{Z}_n$ of h with respect to g.

Pollard's idea:

- ▶ Walk through \mathbb{G} using **iteration function** $f : \mathbb{G} \to \mathbb{G}$, $f(g^{a_i}h^{b_i}) = g^{a_{i+1}}h^{b_{i+1}}$
- Collisions \implies cycles, which are cheap to detect
- If iteration function behaves "randomly enough", then expected runtime is in Θ(√n) and storage is in Θ(1)

Pollard's rho algorithm (3/4)

WATERLOO CHERITON SCHOOL OF COMPUTER SCIENCE

Pollard's rho algorithm (3/4)

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE

Pollard's rho algorithm (4/4)

Problem

Given $g, h \in \mathbb{G}$, compute the discrete logarithm $x \in \mathbb{Z}_n$ of h with respect to g.

van Oorschot's and Wiener's idea:

- Define a distinguished point (DP) as any point with some cheap-to-detect property (e.g., *m* trailing zeros)
- Run Ψ client threads in parallel, each reporting DPs to a central server that checks for collisions
- Expected runtime is in $\Theta(\sqrt{n}/\Psi)$

Part II: GPUs and CUDA

SMPs and CUDA cores

Fermi architecture

- GPU has several streaming multiprocessors (SMP)
- Our Tesla M2050 cards each have 14 SMPs
- SIMD architecture

SMPs and CUDA cores

Fermi architecture

- GPU has several streaming multiprocessors (SMP)
- Our Tesla M2050 cards each have 14 SMPs
- SIMD architecture

Warp scheduler

Instruction cache

Warp scheduler

CUDA memory hierarchy

- Developer manages memory explicitly
- 1 clock pulse for shared memory and L1 cache
- $\blacktriangleright \approx 300$ clock pulses for Local RAM
- Many more clock pulses for system RAM

Tesla M2050

Nvidia Tesla M2050 GPU cards:

- Based on Fermi architecture
- 14 SMPs × 32 ^{cores}/_{SMP} = 448 cores (each running at 1.55 GHz)
 - ► 2¹⁵ × 32-bit ^{registers}/SMP
 - Configurable: 64 KB shared memory / L1 cache
- 3 GB GDDR5 of Local RAM

amazon.com. price: 1,299.00 USD

Our experiments used a host PC with:

- Intel Xeon E5620 quad core (2.4 GHz)
- 2 × 4 GB of DDR3-1333 RAM
- 2× Tesla M2050 GPU cards

Part III: Implementation

CUDA modular multiplication (1/2)

Iteration function for Pollard rho:

$$f(x) = \begin{cases} g \, x & \text{if } 0 \le x < \frac{q}{3} \\ x^2 & \text{if } \frac{q}{3} \le x < \frac{2q}{3} \\ h \, x & \text{if } \frac{2q}{3} \le x < q \end{cases}$$

- Need fast, multiprecision modular multiplication to solve DLs in Z_N^{*}
- We used Koç et al's CIOS algorithm for Montgomery multiplication
 - Low auxiliary storage \implies lots of threads
 - We do one thread per multiplication

CUDA modular multiplication (2/2)

Table: *k*-bit modular multiplications per second and (amortized) time per *k*-bit modular multiplication *on a single Tesla M2050.*

Bit length	Time per trial		Amortized time	Modmults
of modulus	\pm std dev		per modmult	per second
192	$30.538\text{s}\pm$	4 ms	1.19 ns	pprox 840,336,000
256	50.916 s \pm	5 ms	1.98 ns	pprox 505,050,000
512	186.969 s \pm	4 ms	7.30 ns	pprox 136,986,000
768	492.6 s±2	200 ms	19.24 ns	pprox 51,975,000
1024	2304.5 s±3	300 ms	90.02 ns	pprox 11,108,000

• Larger $k \implies$ each multiplication takes longer

 \Rightarrow can compute fewer multiplications in parallel

CUDA Pollard rho (1/2)

Goal

Compute discrete logarithms modulo k_N -bit RSA numbers N = pq with 2^{k_B} -smooth totient.

Our implementation:

- Optimized for $k_N = 1536$ and $k_B \approx 55$
- ► Assumes that the factorization of p − 1 and q − 1 is known
- Uses Pohlig-Hellman approach to decompose problem to k_B-bit subproblems
- Distinguished points: at least 10 trailing zeros in binary (Montgomery) representation

CUDA Pollard rho (2/2)

- Expected cost per *B*-smooth DL is in $\Theta(\sqrt{B})$
- Each card solves $\frac{768}{\lg B}$ such DLs \implies runtime in $\Theta(\sqrt{B}/\lg B)$
- $B \approx 2^{54} \Longrightarrow$ runtime roughly proportional to $B^{0.39}$

Part IV: Implications

Implications

What are the implications for existing DL-based cryptosystems?

In most cases, there are no real implications.

Implications

What are the implications for existing DL-based cryptosystems?

In most cases, there are no real implications.

So why am I speaking at SHARCS?

- Cost estimates for cryptographically interesting computations are useful
- Construct trapdoor discrete logarithm groups
- Potential attacks on some zero-knowledge proofs
- Menezes: duplicate signature key selection (DSKS) attacks on RSA

Problem

For a fixed generator $g \in \mathbb{G}$ and commitment $C = g^x$, prove (in zero-knowledge, with knowledge of *x*) that $a \le x \le b$.

Problem

For a fixed generator $g \in \mathbb{G}$ and commitment $C = g^x$, prove (in zero-knowledge, with knowledge of *x*) that $a \le x \le b$.

Lagrange's four square theorem: An integer $x \in \mathbb{Z}$ is nonnegative if and only if it can be expressed as the sum of (at most) four integer squares.

► Idea: Compute $C_a = C/g^a = g^{x-a}$ and $C_b = g^b/C = g^{b-x}$, then prove that C_a and C_b each commit to a sum of four squares.

Problem

For a fixed generator $g \in \mathbb{G}$ and commitment $C = g^x$, prove (in zero-knowledge, with knowledge of *x*) that $a \le x \le b$.

Lagrange's four square theorem: An integer $x \in \mathbb{Z}$ is nonnegative if and only if it can be expressed as the sum of (at most) four integer squares.

- ► Idea: Compute $C_a = C/g^a = g^{x-a}$ and $C_b = g^b/C = g^{b-x}$, then prove that C_a and C_b each commit to a sum of four squares.
- Soundness relies on order of G being hidden, which it usually is not!

Problem

For a fixed generator $g \in \mathbb{G}$ and commitment $C = g^x$, prove (in zero-knowledge, with knowledge of *x*) that $a \le x \le b$.

Lagrange's four square theorem: An integer $x \in \mathbb{Z}$ is nonnegative if and only if it can be expressed as the sum of (at most) four integer squares.

- ► **Idea**: Compute $C_a = C/g^a = g^{x-a}$ and $C_b = g^b/C = g^{b-x}$, then prove that C_a and C_b each commit to a sum of four squares.
- Soundness relies on order of G being hidden, which it usually is not!
- Move proof into Z^{*}_N for RSA number N = pq (whose factorization is kept secret from the prover)

Trapdoor discrete logarithm groups (1/3)

Idea

Work modulo an RSA modulus N = pq such that p - 1 and q - 1 are *B*-smooth.

- Public key: N
- Private key: p, q and the factorization of p 1 and q 1

Trapdoor discrete logarithm groups (1/3)

Idea

Work modulo an RSA modulus N = pq such that p - 1 and q - 1 are *B*-smooth.

- Public key: N
- Private key: p, q and the factorization of p 1 and q 1

Trapdoor DL cost

- ► With trapdoor key: DL computation takes $\Theta\left(\frac{\lg N}{\lg B}\sqrt{B}\right)$ highly parallelizable work
- ► Let µ₁ be the number of (lg N/2)-bit modular multiplications computable per core-second, then trapdoor DL runtime is

$$\approx \frac{\lg N}{\lg B} \cdot \frac{c \cdot \sqrt{B}}{\Psi \cdot \mu_1} \text{ seconds},$$

for some constant c.

Trapdoor discrete logarithm groups (2/3)

Idea

Work modulo an RSA modulus N = pq such that p - 1 and q - 1 are *B*-smooth.

- Public key: N
- **Private key:** p, q and the factorization of p 1 and q 1

Non-trapdoor DL cost (1/2)

- Without trapdoor key: Best approach seems to be factoring to recover private key!
- Pollard's p 1 algorithm: Factors B-smooth numbers with O(B) work
- p 1 attack is inherently serial! Parallelism won't help much!

Trapdoor discrete logarithm groups (2/3)

Idea

Work modulo an RSA modulus N = pq such that p - 1 and q - 1 are *B*-smooth.

- Public key: N
- **Private key:** p, q and the factorization of p 1 and q 1

Non-trapdoor DL cost (2/2)

- ECM, QS, et al.: highly parallelizable and subexponential cost, but cost scales with Ig N instead of B
- ► For 1536-bit RSA moduli, cross over point occurs when $\Psi \cdot B \approx 2^{85}$
- ► Need $\Psi \gg 2^{30}$ cores to do faster non-trapdoor DL with other algorithms

Trapdoor discrete logarithm groups (3/3)

Idea

Work modulo an RSA modulus N = pq such that p - 1 and q - 1 are *B*-smooth.

- Public key: N
- Private key: p, q and the factorization of p 1 and q 1

Practical security analysis

$$B \approx 2^{55} \Longrightarrow \begin{cases} > 1700 \text{ years for non-trapdoor DL} \\ < 2 \text{ minutes for trapdoor DL} \end{cases}$$

These are wall-clock times!

Part V: Conclusion

Summary

- Used CUDA to solve DLs in smooth-order groups
- Up to about 2⁵⁸-smooth 1536-bit RSA numbers in under 5 minutes on 2 × Tesla M2050
 - > 100 million 768-bit modular multiplications per second
 - > 1.7 billion 192-bit modular multiplications per second
 - Extrapolating: 2^{80} -smooth DL should be feasible in \approx 23 hours on same Tesla cards (with a bit more system RAM)
- Constructed and analyzed trapdoor discrete logarithm groups
- Proposed simple attack on (naively implementations of) Boudot's zero-knowledge range proofs

All of our code is free and open source:

http://crysp.uwaterloo.ca/software/